lean2/hott/algebra/category/limits/limits.hlean

418 lines
17 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Limits in a category
-/
import ..constructions.cone ..constructions.discrete ..constructions.product
..constructions.finite_cats ..category ..constructions.functor
open is_trunc functor nat_trans eq
namespace category
variables {ob : Type} [C : precategory ob] {c c' : ob} (D I : Precategory)
include C
definition is_terminal [class] (c : ob) := Πd, is_contr (d ⟶ c)
definition is_contr_of_is_terminal (c d : ob) [H : is_terminal d] : is_contr (c ⟶ d) :=
H c
local attribute is_contr_of_is_terminal [instance]
definition terminal_morphism (c c' : ob) [H : is_terminal c'] : c ⟶ c' :=
!center
definition hom_terminal_eq [H : is_terminal c'] (f f' : c ⟶ c') : f = f' :=
!is_prop.elim
definition eq_terminal_morphism [H : is_terminal c'] (f : c ⟶ c') : f = terminal_morphism c c' :=
!is_prop.elim
definition terminal_iso_terminal (c c' : ob) [H : is_terminal c] [K : is_terminal c']
: c ≅ c' :=
iso.MK !terminal_morphism !terminal_morphism !hom_terminal_eq !hom_terminal_eq
local attribute is_terminal [reducible]
theorem is_prop_is_terminal [instance] : is_prop (is_terminal c) :=
_
omit C
structure has_terminal_object [class] (D : Precategory) :=
(d : D)
(is_terminal : is_terminal d)
definition terminal_object [reducible] [unfold 2] := @has_terminal_object.d
attribute has_terminal_object.is_terminal [instance]
variable {D}
definition terminal_object_iso_terminal_object (H₁ H₂ : has_terminal_object D)
: @terminal_object D H₁ ≅ @terminal_object D H₂ :=
!terminal_iso_terminal
theorem is_prop_has_terminal_object [instance] (D : Category)
: is_prop (has_terminal_object D) :=
begin
apply is_prop.mk, intro t₁ t₂, induction t₁ with d₁ H₁, induction t₂ with d₂ H₂,
assert p : d₁ = d₂,
{ apply eq_of_iso, apply terminal_iso_terminal},
induction p, exact ap _ !is_prop.elim
end
variable (D)
definition has_limits_of_shape [class] := Π(F : I ⇒ D), has_terminal_object (cone F)
/-
The next definitions states that a category is complete with respect to diagrams
in a certain universe. "is_complete.{o₁ h₁ o₂ h₂}" means that D is complete
with respect to diagrams with shape in Precategory.{o₂ h₂}
-/
definition is_complete.{o₁ h₁ o₂ h₂} [class] (D : Precategory.{o₁ h₁}) :=
Π(I : Precategory.{o₂ h₂}), has_limits_of_shape D I
definition has_limits_of_shape_of_is_complete [instance] [H : is_complete D] (I : Precategory)
: has_limits_of_shape D I := H I
section
open pi
theorem is_prop_has_limits_of_shape [instance] (D : Category) (I : Precategory)
: is_prop (has_limits_of_shape D I) :=
by apply is_trunc_pi; intro F; exact is_prop_has_terminal_object (Category_cone F)
local attribute is_complete [reducible]
theorem is_prop_is_complete [instance] (D : Category) : is_prop (is_complete D) := _
end
variables {D I}
definition has_terminal_object_cone [H : has_limits_of_shape D I]
(F : I ⇒ D) : has_terminal_object (cone F) := H F
local attribute has_terminal_object_cone [instance]
variables (F : I ⇒ D) [H : has_limits_of_shape D I] {i j : I}
include H
definition limit_cone : cone F := !terminal_object
definition is_terminal_limit_cone [instance] : is_terminal (limit_cone F) :=
has_terminal_object.is_terminal _
section specific_limit
omit H
variable {F}
variables (x : cone_obj F) [K : is_terminal x]
include K
definition to_limit_object : D :=
cone_to_obj x
definition to_limit_nat_trans : constant_functor I (to_limit_object x) ⟹ F :=
cone_to_nat x
definition to_limit_morphism (i : I) : to_limit_object x ⟶ F i :=
to_limit_nat_trans x i
theorem to_limit_commute {i j : I} (f : i ⟶ j)
: to_fun_hom F f ∘ to_limit_morphism x i = to_limit_morphism x j :=
naturality (to_limit_nat_trans x) f ⬝ !id_right
definition to_limit_cone_obj [constructor] {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : cone_obj F :=
cone_obj.mk d (nat_trans.mk η (λa b f, p f ⬝ !id_right⁻¹))
definition to_hom_limit {d : D} (η : Πi, d ⟶ F i)
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : d ⟶ to_limit_object x :=
cone_to_hom (terminal_morphism (to_limit_cone_obj x p) x)
theorem to_hom_limit_commute {d : D} (η : Πi, d ⟶ F i)
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I)
: to_limit_morphism x i ∘ to_hom_limit x η p = η i :=
cone_to_eq (terminal_morphism (to_limit_cone_obj x p) x) i
definition to_limit_cone_hom [constructor] {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ to_limit_object x}
(q : Πi, to_limit_morphism x i ∘ h = η i)
: cone_hom (to_limit_cone_obj x p) x :=
cone_hom.mk h q
variable {x}
theorem to_eq_hom_limit {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ to_limit_object x}
(q : Πi, to_limit_morphism x i ∘ h = η i) : h = to_hom_limit x η p :=
ap cone_to_hom (eq_terminal_morphism (to_limit_cone_hom x p q))
theorem to_limit_cone_unique {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j)
{h₁ : d ⟶ to_limit_object x} (q₁ : Πi, to_limit_morphism x i ∘ h₁ = η i)
{h₂ : d ⟶ to_limit_object x} (q₂ : Πi, to_limit_morphism x i ∘ h₂ = η i): h₁ = h₂ :=
to_eq_hom_limit p q₁ ⬝ (to_eq_hom_limit p q₂)⁻¹
omit K
definition to_limit_object_iso_to_limit_object [constructor] (x y : cone_obj F)
[K : is_terminal x] [L : is_terminal y] : to_limit_object x ≅ to_limit_object y :=
cone_iso_pr1 !terminal_iso_terminal
end specific_limit
/-
TODO: relate below definitions to above definitions.
However, type class resolution seems to fail...
-/
definition limit_object : D :=
cone_to_obj (limit_cone F)
definition limit_nat_trans : constant_functor I (limit_object F) ⟹ F :=
cone_to_nat (limit_cone F)
definition limit_morphism (i : I) : limit_object F ⟶ F i :=
limit_nat_trans F i
variable {H}
theorem limit_commute {i j : I} (f : i ⟶ j)
: to_fun_hom F f ∘ limit_morphism F i = limit_morphism F j :=
naturality (limit_nat_trans F) f ⬝ !id_right
variable [H]
definition limit_cone_obj [constructor] {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : cone_obj F :=
cone_obj.mk d (nat_trans.mk η (λa b f, p f ⬝ !id_right⁻¹))
variable {H}
definition hom_limit {d : D} (η : Πi, d ⟶ F i)
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : d ⟶ limit_object F :=
cone_to_hom (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _))
theorem hom_limit_commute {d : D} (η : Πi, d ⟶ F i)
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I)
: limit_morphism F i ∘ hom_limit F η p = η i :=
cone_to_eq (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _)) i
definition limit_cone_hom [constructor] {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F}
(q : Πi, limit_morphism F i ∘ h = η i) : cone_hom (limit_cone_obj F p) (limit_cone F) :=
cone_hom.mk h q
variable {F}
theorem eq_hom_limit {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F}
(q : Πi, limit_morphism F i ∘ h = η i) : h = hom_limit F η p :=
ap cone_to_hom (@eq_terminal_morphism _ _ _ _ (is_terminal_limit_cone _) (limit_cone_hom F p q))
theorem limit_cone_unique {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j)
{h₁ : d ⟶ limit_object F} (q₁ : Πi, limit_morphism F i ∘ h₁ = η i)
{h₂ : d ⟶ limit_object F} (q₂ : Πi, limit_morphism F i ∘ h₂ = η i): h₁ = h₂ :=
eq_hom_limit p q₁ ⬝ (eq_hom_limit p q₂)⁻¹
definition limit_hom_limit {F G : I ⇒ D} (η : F ⟹ G) : limit_object F ⟶ limit_object G :=
hom_limit _ (λi, η i ∘ limit_morphism F i)
abstract by intro i j f; rewrite [assoc,naturality,-assoc,limit_commute] end
theorem limit_hom_limit_commute {F G : I ⇒ D} (η : F ⟹ G)
: limit_morphism G i ∘ limit_hom_limit η = η i ∘ limit_morphism F i :=
!hom_limit_commute
-- theorem hom_limit_commute {d : D} (η : Πi, d ⟶ F i)
-- (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I)
-- : limit_morphism F i ∘ hom_limit F η p = η i :=
-- cone_to_eq (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _)) i
omit H
variable (F)
definition limit_object_iso_limit_object [constructor] (H₁ H₂ : has_limits_of_shape D I) :
@(limit_object F) H₁ ≅ @(limit_object F) H₂ :=
cone_iso_pr1 !terminal_object_iso_terminal_object
definition limit_functor [constructor] (D I : Precategory) [H : has_limits_of_shape D I]
: D ^c I ⇒ D :=
begin
fapply functor.mk: esimp,
{ intro F, exact limit_object F},
{ apply @limit_hom_limit},
{ intro F, unfold limit_hom_limit, refine (eq_hom_limit _ _)⁻¹, intro i,
apply comp_id_eq_id_comp},
{ intro F G H η θ, unfold limit_hom_limit, refine (eq_hom_limit _ _)⁻¹, intro i,
rewrite [assoc, hom_limit_commute, -assoc, hom_limit_commute, assoc]}
end
section bin_products
open bool prod.ops
definition has_binary_products [reducible] (D : Precategory) := has_limits_of_shape D c2
variables [K : has_binary_products D] (d d' : D)
include K
definition product_object : D :=
limit_object (c2_functor D d d')
infixr ` ×l `:75 := product_object
definition pr1 : d ×l d' ⟶ d :=
limit_morphism (c2_functor D d d') ff
definition pr2 : d ×l d' ⟶ d' :=
limit_morphism (c2_functor D d d') tt
variables {d d'}
definition hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : x ⟶ d ×l d' :=
hom_limit (c2_functor D d d') (bool.rec f g)
(by intro b₁ b₂ f; induction b₁: induction b₂: esimp at *; try contradiction: apply id_left)
theorem pr1_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr1 ∘ hom_product f g = f :=
hom_limit_commute (c2_functor D d d') (bool.rec f g) _ ff
theorem pr2_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr2 ∘ hom_product f g = g :=
hom_limit_commute (c2_functor D d d') (bool.rec f g) _ tt
theorem eq_hom_product {x : D} {f : x ⟶ d} {g : x ⟶ d'} {h : x ⟶ d ×l d'}
(p : !pr1 ∘ h = f) (q : !pr2 ∘ h = g) : h = hom_product f g :=
eq_hom_limit _ (bool.rec p q)
theorem product_cone_unique {x : D} {f : x ⟶ d} {g : x ⟶ d'}
{h₁ : x ⟶ d ×l d'} (p₁ : !pr1 ∘ h₁ = f) (q₁ : !pr2 ∘ h₁ = g)
{h₂ : x ⟶ d ×l d'} (p₂ : !pr1 ∘ h₂ = f) (q₂ : !pr2 ∘ h₂ = g) : h₁ = h₂ :=
eq_hom_product p₁ q₁ ⬝ (eq_hom_product p₂ q₂)⁻¹
variable (D)
-- TODO: define this in terms of limit_functor and functor_two_left (in exponential_laws)
definition product_functor [constructor] : D ×c D ⇒ D :=
functor.mk
(λx, product_object x.1 x.2)
(λx y f, hom_product (f.1 ∘ !pr1) (f.2 ∘ !pr2))
abstract begin intro x, symmetry, apply eq_hom_product: apply comp_id_eq_id_comp end end
abstract begin intro x y z g f, symmetry, apply eq_hom_product,
rewrite [assoc,pr1_hom_product,-assoc,pr1_hom_product,assoc],
rewrite [assoc,pr2_hom_product,-assoc,pr2_hom_product,assoc] end end
omit K
variables {D} (d d')
definition product_object_iso_product_object [constructor] (H₁ H₂ : has_binary_products D) :
@product_object D H₁ d d' ≅ @product_object D H₂ d d' :=
limit_object_iso_limit_object _ H₁ H₂
end bin_products
section equalizers
open bool prod.ops sum equalizer_category_hom
definition has_equalizers [reducible] (D : Precategory) := has_limits_of_shape D equalizer_category
variables [K : has_equalizers D]
include K
variables {d d' x : D} (f g : d ⟶ d')
definition equalizer_object : D :=
limit_object (equalizer_category_functor D f g)
definition equalizer : equalizer_object f g ⟶ d :=
limit_morphism (equalizer_category_functor D f g) ff
theorem equalizes : f ∘ equalizer f g = g ∘ equalizer f g :=
limit_commute (equalizer_category_functor D f g) (inl f1) ⬝
(limit_commute (equalizer_category_functor D f g) (inl f2))⁻¹
variables {f g}
definition hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h) : x ⟶ equalizer_object f g :=
hom_limit (equalizer_category_functor D f g)
(bool.rec h (g ∘ h))
begin
intro b₁ b₂ i; induction i with j j: induction j,
-- report(?) "esimp" is super slow here
exact p, reflexivity, apply id_left
end
theorem equalizer_hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h)
: equalizer f g ∘ hom_equalizer h p = h :=
hom_limit_commute (equalizer_category_functor D f g) (bool.rec h (g ∘ h)) _ ff
theorem eq_hom_equalizer {h : x ⟶ d} (p : f ∘ h = g ∘ h) {i : x ⟶ equalizer_object f g}
(q : equalizer f g ∘ i = h) : i = hom_equalizer h p :=
eq_hom_limit _ (bool.rec q
begin
refine ap (λx, x ∘ i) (limit_commute (equalizer_category_functor D f g) (inl f2))⁻¹ ⬝ _,
refine !assoc⁻¹ ⬝ _,
exact ap (λx, _ ∘ x) q
end)
theorem equalizer_cone_unique {h : x ⟶ d} (p : f ∘ h = g ∘ h)
{i₁ : x ⟶ equalizer_object f g} (q₁ : equalizer f g ∘ i₁ = h)
{i₂ : x ⟶ equalizer_object f g} (q₂ : equalizer f g ∘ i₂ = h) : i₁ = i₂ :=
eq_hom_equalizer p q₁ ⬝ (eq_hom_equalizer p q₂)⁻¹
omit K
variables (f g)
definition equalizer_object_iso_equalizer_object [constructor] (H₁ H₂ : has_equalizers D) :
@equalizer_object D H₁ _ _ f g ≅ @equalizer_object D H₂ _ _ f g :=
limit_object_iso_limit_object _ H₁ H₂
end equalizers
section pullbacks
open sum prod.ops pullback_category_ob pullback_category_hom
definition has_pullbacks [reducible] (D : Precategory) := has_limits_of_shape D pullback_category
variables [K : has_pullbacks D]
include K
variables {d₁ d₂ d₃ x : D} (f : d₁ ⟶ d₃) (g : d₂ ⟶ d₃)
definition pullback_object : D :=
limit_object (pullback_category_functor D f g)
definition pullback : pullback_object f g ⟶ d₂ :=
limit_morphism (pullback_category_functor D f g) BL
definition pullback_rev : pullback_object f g ⟶ d₁ :=
limit_morphism (pullback_category_functor D f g) TR
theorem pullback_commutes : f ∘ pullback_rev f g = g ∘ pullback f g :=
limit_commute (pullback_category_functor D f g) (inl f1) ⬝
(limit_commute (pullback_category_functor D f g) (inl f2))⁻¹
variables {f g}
definition hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
: x ⟶ pullback_object f g :=
hom_limit (pullback_category_functor D f g)
(pullback_category_ob.rec h₁ h₂ (g ∘ h₂))
begin
intro i₁ i₂ k; induction k with j j: induction j,
exact p, reflexivity, apply id_left
end
theorem pullback_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
: pullback f g ∘ hom_pullback h₁ h₂ p = h₂ :=
hom_limit_commute (pullback_category_functor D f g) (pullback_category_ob.rec h₁ h₂ (g ∘ h₂)) _ BL
theorem pullback_rev_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
: pullback_rev f g ∘ hom_pullback h₁ h₂ p = h₁ :=
hom_limit_commute (pullback_category_functor D f g) (pullback_category_ob.rec h₁ h₂ (g ∘ h₂)) _ TR
theorem eq_hom_pullback {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂)
{k : x ⟶ pullback_object f g} (q : pullback f g ∘ k = h₂) (r : pullback_rev f g ∘ k = h₁)
: k = hom_pullback h₁ h₂ p :=
eq_hom_limit _ (pullback_category_ob.rec r q
begin
refine ap (λx, x ∘ k) (limit_commute (pullback_category_functor D f g) (inl f2))⁻¹ ⬝ _,
refine !assoc⁻¹ ⬝ _,
exact ap (λx, _ ∘ x) q
end)
theorem pullback_cone_unique {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂)
{k₁ : x ⟶ pullback_object f g} (q₁ : pullback f g ∘ k₁ = h₂) (r₁ : pullback_rev f g ∘ k₁ = h₁)
{k₂ : x ⟶ pullback_object f g} (q₂ : pullback f g ∘ k₂ = h₂) (r₂ : pullback_rev f g ∘ k₂ = h₁)
: k₁ = k₂ :=
(eq_hom_pullback p q₁ r₁) ⬝ (eq_hom_pullback p q₂ r₂)⁻¹
variables (f g)
definition pullback_object_iso_pullback_object [constructor] (H₁ H₂ : has_pullbacks D) :
@pullback_object D H₁ _ _ _ f g ≅ @pullback_object D H₂ _ _ _ f g :=
limit_object_iso_limit_object _ H₁ H₂
end pullbacks
namespace ops
infixr ×l := product_object
end ops
end category