lean2/library/data/set/basic.lean

110 lines
2.8 KiB
Text
Raw Normal View History

/-
copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LIcENSE.
Module: data.set.basic
Author: Jeremy Avigad, Leonardo de Moura
-/
import logic
open eq.ops
definition set (T : Type) := T → Prop
namespace set
variable {T : Type}
definition mem [reducible] (x : T) (a : set T) := a x
notation e ∈ a := mem e a
theorem setext {a b : set T} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
funext (take x, propext (H x))
definition subset (a b : set T) := ∀ x, x ∈ a → x ∈ b
infix `⊆`:50 := subset
definition eq_of_subset_of_subset (a b : set T) (H₁ : a ⊆ b) (H₂ : b ⊆ a) : a = b :=
setext (take x, iff.intro (H₁ x) (H₂ x))
/- empty -/
definition empty [reducible] : set T := λx, false
notation `∅` := empty
theorem mem_empty (x : T) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, H
/- univ -/
definition univ : set T := λx, true
theorem mem_univ (x : T) : x ∈ univ := trivial
/- inter -/
definition inter [reducible] (a b : set T) : set T := λx, x ∈ a ∧ x ∈ b
notation a ∩ b := inter a b
theorem mem_inter (x : T) (a b : set T) : x ∈ a ∩ b ↔ (x ∈ a ∧ x ∈ b) := !iff.refl
theorem inter_self (a : set T) : a ∩ a = a :=
setext (take x, iff.intro
(assume H, and.elim_left H)
(assume H, and.intro H H))
theorem inter_empty (a : set T) : a ∩ ∅ = ∅ :=
setext (take x, iff.intro
(assume H, and.elim_right H)
(assume H, false.elim H))
theorem empty_inter (a : set T) : ∅ ∩ a = ∅ :=
setext (take x, iff.intro
(assume H, and.elim_left H)
(assume H, false.elim H))
theorem inter.comm (a b : set T) : a ∩ b = b ∩ a :=
setext (take x, !and.comm)
theorem inter.assoc (a b c : set T) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
setext (take x, !and.assoc)
/- union -/
definition union [reducible] (a b : set T) : set T := λx, x ∈ a x ∈ b
notation a b := union a b
theorem mem_union (x : T) (a b : set T) : x ∈ a b ↔ (x ∈ a x ∈ b) := !iff.refl
theorem union_self (a : set T) : a a = a :=
setext (take x, iff.intro
(assume H,
match H with
| or.inl H₁ := H₁
| or.inr H₂ := H₂
end)
(assume H, or.inl H))
theorem union_empty (a : set T) : a ∅ = a :=
setext (take x, iff.intro
(assume H, match H with
| or.inl H₁ := H₁
| or.inr H₂ := false.elim H₂
end)
(assume H, or.inl H))
theorem union_empty_left (a : set T) : ∅ a = a :=
setext (take x, iff.intro
(assume H, match H with
| or.inl H₁ := false.elim H₁
| or.inr H₂ := H₂
end)
(assume H, or.inr H))
theorem union.comm (a b : set T) : a b = b a :=
setext (take x, or.comm)
theorem union_assoc (a b c : set T) : (a b) c = a (b c) :=
setext (take x, or.assoc)
end set