lean2/src/library/tactic/apply_tactic.cpp

176 lines
7.8 KiB
C++
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <utility>
#include <algorithm>
#include "kernel/environment.h"
#include "kernel/instantiate.h"
#include "kernel/type_checker.h"
#include "kernel/abstract.h"
#include "library/fo_unify.h"
#include "library/kernel_bindings.h"
#include "library/tactic/goal.h"
#include "library/tactic/proof_builder.h"
#include "library/tactic/proof_state.h"
#include "library/tactic/tactic.h"
#include "library/tactic/apply_tactic.h"
namespace lean {
static name g_tmp_mvar_name = name::mk_internal_unique_name();
static optional<proof_state> apply_tactic(ro_environment const & env, proof_state const & s,
expr const & th, expr const & th_type, bool all) {
precision prec = s.get_precision();
if (prec != precision::Precise && prec != precision::Over) {
// it is pointless to apply this tactic, since it will produce UnderOver
return none_proof_state();
}
unsigned num = 0;
expr th_type_c = th_type;
while (is_pi(th_type_c)) {
num++;
th_type_c = abst_body(th_type_c);
}
buffer<expr> mvars;
for (unsigned i = 0; i < num; i++)
mvars.push_back(mk_metavar(name(g_tmp_mvar_name, i)));
metavar_env new_menv = s.get_menv().copy();
th_type_c = instantiate(th_type_c, mvars.size(), mvars.data(), new_menv);
bool found = false;
buffer<std::pair<name, goal>> new_goals_buf;
// The proof is based on an application of th.
// There are two kinds of arguments:
// 1) regular arguments computed using unification.
// 2) propositions that generate new subgoals.
typedef std::pair<name, hypotheses> proposition_arg;
// We use a pair to simulate this "union" type.
typedef list<std::pair<optional<expr>,
optional<proposition_arg>>> arg_list;
// We may solve more than one goal.
// We store the solved goals using a list of pairs
// name, args. Where the 'name' is the name of the solved goal.
type_checker checker(env);
list<std::pair<name, arg_list>> proof_info;
for (auto const & p : s.get_goals()) {
check_interrupted();
if (all || !found) {
name const & gname = p.first;
goal const & g = p.second;
expr const & c = g.get_conclusion();
optional<substitution> subst = fo_unify(th_type_c, c);
if (subst) {
found = true;
th_type_c = th_type;
arg_list l;
unsigned new_goal_idx = 1;
for (auto const & mvar : mvars) {
expr mvar_sol = apply(*subst, mvar);
if (mvar_sol != mvar) {
l = cons(mk_pair(some_expr(mvar_sol), optional<proposition_arg>()), l);
th_type_c = instantiate(abst_body(th_type_c), mvar_sol, new_menv);
} else {
expr arg_type = abst_domain(th_type_c);
if (checker.is_flex_proposition(arg_type, context(), new_menv)) {
name new_gname(gname, new_goal_idx);
new_goal_idx++;
hypotheses hs = g.get_hypotheses();
update_hypotheses_fn add_hypothesis(hs);
hypotheses extra_hs;
while (is_pi(arg_type)) {
expr d = abst_domain(arg_type);
name n = arg_to_hypothesis_name(abst_name(arg_type), d, env, context(), new_menv);
n = add_hypothesis(n, d);
extra_hs.emplace_front(n, d);
arg_type = instantiate(abst_body(arg_type), mk_constant(n, d), new_menv);
}
l = cons(mk_pair(none_expr(), some(proposition_arg(new_gname, extra_hs))), l);
new_goals_buf.emplace_back(new_gname, goal(add_hypothesis.get_hypotheses(), arg_type));
th_type_c = instantiate(abst_body(th_type_c), mk_constant(new_gname, arg_type), new_menv);
} else {
// we have to create a new metavar in menv
// since we do not have a substitution for mvar, and
// it is not a proposition
expr new_m = new_menv->mk_metavar(context(), some_expr(arg_type));
l = cons(mk_pair(some_expr(new_m), optional<proposition_arg>()), l);
th_type_c = instantiate(abst_body(th_type_c), 1, &new_m, new_menv);
}
}
}
proof_info.emplace_front(gname, l);
} else {
new_goals_buf.push_back(p);
}
} else {
new_goals_buf.push_back(p);
}
}
if (found) {
proof_builder pb = s.get_proof_builder();
proof_builder new_pb = mk_proof_builder([=](proof_map const & m, assignment const & a) -> expr {
proof_map new_m(m);
for (auto const & p1 : proof_info) {
name const & gname = p1.first;
arg_list const & l = p1.second;
buffer<expr> args;
args.push_back(th);
for (auto const & p2 : l) {
optional<expr> const & arg = p2.first;
if (arg) {
// TODO(Leo): decide if we instantiate the metavars in the end or not.
args.push_back(*arg);
} else {
proposition_arg const & parg = *(p2.second);
name const & subgoal_name = parg.first;
expr pr = find(m, subgoal_name);
for (auto p : parg.second)
pr = Fun(p.first, p.second, pr);
args.push_back(pr);
new_m.erase(subgoal_name);
}
}
std::reverse(args.begin() + 1, args.end());
new_m.insert(gname, mk_app(args));
}
return pb(new_m, a);
});
goals new_gs = to_list(new_goals_buf.begin(), new_goals_buf.end());
return some(proof_state(precision::Over, new_gs, new_menv, new_pb, s.get_cex_builder()));
} else {
return none_proof_state();
}
}
tactic apply_tactic(expr const & th, bool all) {
return mk_tactic01([=](ro_environment const & env, io_state const &, proof_state const & s) -> optional<proof_state> {
expr th_type = type_inferer(env)(th, context(), s.get_menv().copy());
return apply_tactic(env, s, th, th_type, all);
});
}
tactic apply_tactic(name const & th_name, bool all) {
return mk_tactic01([=](ro_environment const & env, io_state const &, proof_state const & s) -> optional<proof_state> {
optional<object> obj = env->find_object(th_name);
if (obj && (obj->is_theorem() || obj->is_axiom()))
return apply_tactic(env, s, mk_constant(th_name), obj->get_type(), all);
else
return none_proof_state();
});
}
int mk_apply_tactic(lua_State * L) {
int nargs = lua_gettop(L);
bool all = nargs >= 2 ? lua_toboolean(L, 2) : true;
if (is_expr(L, 1))
return push_tactic(L, apply_tactic(to_expr(L, 1), all));
else
return push_tactic(L, apply_tactic(to_name_ext(L, 1), all));
}
void open_apply_tactic(lua_State * L) {
SET_GLOBAL_FUN(mk_apply_tactic, "apply_tac");
}
}