lean2/tests/lean/induction2.lean.expected.out

105 lines
5.1 KiB
Text
Raw Normal View History

Set: pp::colors
Set: pp::unicode
Imported 'macros'
Using: Nat
Assumed: Induction
Failed to solve
⊢ (?M::10 ≈ @mp) ⊕ (?M::10 ≈ eq::@mp) ⊕ (?M::10 ≈ forall::@elim)
(line: 11: pos: 5) Overloading at
(forall::@elim | eq::@mp | @mp) _ _ Induction _
Failed to solve
⊢ ( → Bool) → Bool ≺ Bool
(line: 11: pos: 5) Type of argument 3 must be convertible to the expected type in the application of
@mp
with arguments:
?M::7
λ P : → Bool, P 0 ⇒ (∀ n : , P n ⇒ P (n + 1)) ⇒ (∀ n : , P n)
Induction
?M::9
Failed to solve
⊢ ∀ P : → Bool, P 0 ⇒ (∀ n : , P n ⇒ P (n + 1)) ⇒ (∀ n : , P n) ≺ ?M::7 == ?M::8
(line: 11: pos: 5) Type of argument 3 must be convertible to the expected type in the application of
eq::@mp
with arguments:
?M::7
?M::8
Induction
?M::9
Failed to solve
⊢ (?M::17 ≈ @mp) ⊕ (?M::17 ≈ eq::@mp) ⊕ (?M::17 ≈ forall::@elim)
(line: 12: pos: 6) Overloading at
(forall::@elim | eq::@mp | @mp)
_
_
((forall::@elim | eq::@mp | @mp) _ _ Induction _)
(forall::intro (λ m : _, Nat::add::zerol m ⋈ symm (Nat::add::zeror m)))
Failed to solve
⊢ (?M::34 ≈ @mp) ⊕ (?M::34 ≈ eq::@mp) ⊕ (?M::34 ≈ forall::@elim)
(line: 15: pos: 5) Overloading at
let κ::1 := (forall::@elim | eq::@mp | @mp)
_
_
((forall::@elim | eq::@mp | @mp) _ _ Induction _)
(forall::intro (λ m : _, Nat::add::zerol m ⋈ symm (Nat::add::zeror m))),
κ::2 := λ n : _,
discharge
(λ iH : _,
forall::intro
(λ m : _,
Nat::add::succl n m ⋈ subst (refl (n + m + 1)) iH ⋈
symm (Nat::add::succr m n)))
in (forall::@elim | eq::@mp | @mp) _ _ κ::1 (forall::intro κ::2)
Failed to solve
⊢ ∀ n : , ?M::9 n ≺ ∀ n m : , n + m = m + n
(line: 15: pos: 5) Type of definition 'Comm1' must be convertible to expected type.
Failed to solve
⊢ (∀ n : , ?M::9 n ⇒ ?M::9 (n + 1)) ⇒ (∀ n : , ?M::9 n) ≺ ?M::3 == ?M::4
(line: 15: pos: 5) Type of argument 3 must be convertible to the expected type in the application of
eq::@mp
with arguments:
?M::3
?M::4
Induction ◂ ?M::9 ◂ forall::intro (λ m : , Nat::add::zerol m ⋈ symm (Nat::add::zeror m))
forall::intro
(λ n : ,
discharge
(λ iH : ?M::20,
forall::intro
(λ m : ,
Nat::add::succl n m ⋈ subst (refl (n + m + 1)) iH ⋈
symm (Nat::add::succr m n))))
Failed to solve
⊢ Bool ≺ ?M::3 → Bool
(line: 15: pos: 5) Type of argument 3 must be convertible to the expected type in the application of
forall::@elim
with arguments:
?M::3
∀ n : , ?M::9 n
Induction ◂ ?M::9 ◂ forall::intro (λ m : , Nat::add::zerol m ⋈ symm (Nat::add::zeror m))
forall::intro
(λ n : ,
discharge
(λ iH : ?M::20,
forall::intro
(λ m : ,
Nat::add::succl n m ⋈ subst (refl (n + m + 1)) iH ⋈
symm (Nat::add::succr m n))))
Failed to solve
⊢ ?M::9 0 ⇒ (∀ n : , ?M::9 n ⇒ ?M::9 (n + 1)) ⇒ (∀ n : , ?M::9 n) ≺ ?M::5 == ?M::6
(line: 12: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
eq::@mp
with arguments:
?M::5
?M::6
Induction ◂ ?M::9
forall::intro (λ m : , Nat::add::zerol m ⋈ symm (Nat::add::zeror m))
Failed to solve
⊢ Bool ≺ ?M::5 → Bool
(line: 12: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
forall::@elim
with arguments:
?M::5
(∀ n : , ?M::9 n ⇒ ?M::9 (n + 1)) ⇒ (∀ n : , ?M::9 n)
Induction ◂ ?M::9
forall::intro (λ m : , Nat::add::zerol m ⋈ symm (Nat::add::zeror m))