lean2/tests/lean/induction2.lean.expected.out
2014-01-07 13:24:46 -08:00

104 lines
5.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Set: pp::colors
Set: pp::unicode
Imported 'macros'
Using: Nat
Assumed: Induction
Failed to solve
⊢ (?M::10 ≈ @mp) ⊕ (?M::10 ≈ eq::@mp) ⊕ (?M::10 ≈ forall::@elim)
(line: 11: pos: 5) Overloading at
(forall::@elim | eq::@mp | @mp) _ _ Induction _
Failed to solve
⊢ ( → Bool) → Bool ≺ Bool
(line: 11: pos: 5) Type of argument 3 must be convertible to the expected type in the application of
@mp
with arguments:
?M::7
λ P : → Bool, P 0 ⇒ (∀ n : , P n ⇒ P (n + 1)) ⇒ (∀ n : , P n)
Induction
?M::9
Failed to solve
⊢ ∀ P : → Bool, P 0 ⇒ (∀ n : , P n ⇒ P (n + 1)) ⇒ (∀ n : , P n) ≺ ?M::7 == ?M::8
(line: 11: pos: 5) Type of argument 3 must be convertible to the expected type in the application of
eq::@mp
with arguments:
?M::7
?M::8
Induction
?M::9
Failed to solve
⊢ (?M::17 ≈ @mp) ⊕ (?M::17 ≈ eq::@mp) ⊕ (?M::17 ≈ forall::@elim)
(line: 12: pos: 6) Overloading at
(forall::@elim | eq::@mp | @mp)
_
_
((forall::@elim | eq::@mp | @mp) _ _ Induction _)
(forall::intro (λ m : _, Nat::add::zerol m ⋈ symm (Nat::add::zeror m)))
Failed to solve
⊢ (?M::34 ≈ @mp) ⊕ (?M::34 ≈ eq::@mp) ⊕ (?M::34 ≈ forall::@elim)
(line: 15: pos: 5) Overloading at
let κ::1 := (forall::@elim | eq::@mp | @mp)
_
_
((forall::@elim | eq::@mp | @mp) _ _ Induction _)
(forall::intro (λ m : _, Nat::add::zerol m ⋈ symm (Nat::add::zeror m))),
κ::2 := λ n : _,
discharge
(λ iH : _,
forall::intro
(λ m : _,
Nat::add::succl n m ⋈ subst (refl (n + m + 1)) iH ⋈
symm (Nat::add::succr m n)))
in (forall::@elim | eq::@mp | @mp) _ _ κ::1 (forall::intro κ::2)
Failed to solve
⊢ ∀ n : , ?M::9 n ≺ ∀ n m : , n + m = m + n
(line: 15: pos: 5) Type of definition 'Comm1' must be convertible to expected type.
Failed to solve
⊢ (∀ n : , ?M::9 n ⇒ ?M::9 (n + 1)) ⇒ (∀ n : , ?M::9 n) ≺ ?M::3 == ?M::4
(line: 15: pos: 5) Type of argument 3 must be convertible to the expected type in the application of
eq::@mp
with arguments:
?M::3
?M::4
Induction ◂ ?M::9 ◂ forall::intro (λ m : , Nat::add::zerol m ⋈ symm (Nat::add::zeror m))
forall::intro
(λ n : ,
discharge
(λ iH : ?M::20,
forall::intro
(λ m : ,
Nat::add::succl n m ⋈ subst (refl (n + m + 1)) iH ⋈
symm (Nat::add::succr m n))))
Failed to solve
⊢ Bool ≺ ?M::3 → Bool
(line: 15: pos: 5) Type of argument 3 must be convertible to the expected type in the application of
forall::@elim
with arguments:
?M::3
∀ n : , ?M::9 n
Induction ◂ ?M::9 ◂ forall::intro (λ m : , Nat::add::zerol m ⋈ symm (Nat::add::zeror m))
forall::intro
(λ n : ,
discharge
(λ iH : ?M::20,
forall::intro
(λ m : ,
Nat::add::succl n m ⋈ subst (refl (n + m + 1)) iH ⋈
symm (Nat::add::succr m n))))
Failed to solve
⊢ ?M::9 0 ⇒ (∀ n : , ?M::9 n ⇒ ?M::9 (n + 1)) ⇒ (∀ n : , ?M::9 n) ≺ ?M::5 == ?M::6
(line: 12: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
eq::@mp
with arguments:
?M::5
?M::6
Induction ◂ ?M::9
forall::intro (λ m : , Nat::add::zerol m ⋈ symm (Nat::add::zeror m))
Failed to solve
⊢ Bool ≺ ?M::5 → Bool
(line: 12: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
forall::@elim
with arguments:
?M::5
(∀ n : , ?M::9 n ⇒ ?M::9 (n + 1)) ⇒ (∀ n : , ?M::9 n)
Induction ◂ ?M::9
forall::intro (λ m : , Nat::add::zerol m ⋈ symm (Nat::add::zeror m))