lean2/hott/algebra/category/yoneda.hlean

158 lines
6.7 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Yoneda embedding and Yoneda lemma
-/
import .functor.curry .constructions.hset .constructions.opposite .functor.attributes
open category eq functor prod.ops is_trunc iso is_equiv equiv category.set nat_trans lift
namespace yoneda
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C}
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
calc
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _)
... = _ : by rewrite (assoc f2 f3 f4)
definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ cset.{v} :=
functor.mk
(λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2)
(λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y) (h : @homset (Cᵒᵖ) C x.1 x.2),
2015-09-02 23:41:19 +00:00
f.2 ∘[C] (h ∘[C] f.1))
(λ x, @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2)) (λ h, concat (by apply @id_left) (by apply @id_right)))
(λ x y z g f,
eq_of_homotopy (by intros; apply @representable_functor_assoc))
/-
These attributes make sure that the fields of the category "set" reduce to the right things
However, we don't want to have them globally, because that will unfold the composition g ∘ f
in a Category to category.category.comp g f
-/
local attribute Category.to.precategory category.to_precategory [constructor]
-- should this be defined as "yoneda_embedding Cᵒᵖ"?
definition contravariant_yoneda_embedding [reducible] (C : Precategory) : Cᵒᵖ ⇒ cset ^c C :=
functor_curry !hom_functor
definition yoneda_embedding (C : Precategory) : C ⇒ cset ^c Cᵒᵖ :=
functor_curry (!hom_functor ∘f !functor_prod_flip)
2015-09-02 23:41:19 +00:00
notation `ɏ` := yoneda_embedding _
definition yoneda_lemma_hom [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset)
2015-09-02 23:41:19 +00:00
(x : trunctype.carrier (F c)) : ɏ c ⟹ F :=
begin
fapply nat_trans.mk,
{ intro c', esimp [yoneda_embedding], intro f, exact F f x},
{ intro c' c'' f, esimp [yoneda_embedding], apply eq_of_homotopy, intro f',
refine _ ⬝ ap (λy, to_fun_hom F y x) !(@id_left _ C)⁻¹,
exact ap10 !(@respect_comp Cᵒᵖ cset)⁻¹ x}
2015-09-02 23:41:19 +00:00
end
definition yoneda_lemma_equiv [constructor] {C : Precategory} (c : C)
(F : Cᵒᵖ ⇒ cset) : hom (ɏ c) F ≃ lift (F c) :=
2015-09-02 23:41:19 +00:00
begin
fapply equiv.MK,
{ intro η, exact up (η c id)},
{ intro x, induction x with x, exact yoneda_lemma_hom c F x},
{ exact abstract begin intro x, induction x with x, esimp, apply ap up,
exact ap10 !respect_id x end end},
{ exact abstract begin intro η, esimp, apply nat_trans_eq,
2015-09-02 23:41:19 +00:00
intro c', esimp, apply eq_of_homotopy,
intro f, esimp [yoneda_embedding] at f,
transitivity (F f ∘ η c) id, reflexivity,
rewrite naturality, esimp [yoneda_embedding], rewrite [id_left], apply ap _ !id_left end end},
end
definition yoneda_lemma {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset) :
homset (ɏ c) F ≅ lift_functor (F c) :=
begin
apply iso_of_equiv, esimp, apply yoneda_lemma_equiv,
end
theorem yoneda_lemma_natural_ob {C : Precategory} (F : Cᵒᵖ ⇒ cset) {c c' : C} (f : c' ⟶ c)
(η : ɏ c ⟹ F) :
to_fun_hom (lift_functor ∘f F) f (to_hom (yoneda_lemma c F) η) =
to_hom (yoneda_lemma c' F) (η ∘n to_fun_hom ɏ f) :=
begin
esimp [yoneda_lemma,yoneda_embedding], apply ap up,
transitivity (F f ∘ η c) id, reflexivity,
rewrite naturality,
esimp [yoneda_embedding],
apply ap (η c'),
esimp [yoneda_embedding, Opposite],
rewrite [+id_left,+id_right],
end
-- TODO: Investigate what is the bottleneck to type check the next theorem
-- attribute yoneda_lemma lift_functor Precategory_hset precategory_hset homset
-- yoneda_embedding nat_trans.compose functor_nat_trans_compose [reducible]
-- attribute tlift functor.compose [reducible]
theorem yoneda_lemma_natural_functor.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ cset)
(θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) :
(lift_functor.{v u} ∘fn θ) c (to_hom (yoneda_lemma c F) η) =
proof to_hom (yoneda_lemma c F') (θ ∘n η) qed :=
by reflexivity
-- theorem xx.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ set)
-- (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) :
-- proof _ qed =
-- to_hom (yoneda_lemma c F') (θ ∘n η) :=
-- by reflexivity
-- theorem yy.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ set)
-- (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) :
-- (lift_functor.{v u} ∘fn θ) c (to_hom (yoneda_lemma c F) η) =
-- proof _ qed :=
-- by reflexivity
definition fully_faithful_yoneda_embedding [instance] (C : Precategory) :
fully_faithful (ɏ : C ⇒ cset ^c Cᵒᵖ) :=
begin
intro c c',
fapply is_equiv_of_equiv_of_homotopy,
{ symmetry, transitivity _, apply @equiv_of_iso (homset _ _),
rexact yoneda_lemma c (ɏ c'), esimp [yoneda_embedding], exact !equiv_lift⁻¹ᵉ},
{ intro f, apply nat_trans_eq, intro c, apply eq_of_homotopy, intro f',
esimp [equiv.symm,equiv.trans],
esimp [yoneda_lemma,yoneda_embedding,Opposite],
rewrite [id_left,id_right]}
end
definition is_embedding_yoneda_embedding (C : Category) :
is_embedding (ɏ : C → Cᵒᵖ ⇒ cset) :=
begin
intro c c', fapply is_equiv_of_equiv_of_homotopy,
{ exact !eq_equiv_iso ⬝e !iso_equiv_F_iso_F ⬝e !eq_equiv_iso⁻¹ᵉ},
{ intro p, induction p, esimp [equiv.trans, equiv.symm],
esimp [to_fun_iso],
rewrite -eq_of_iso_refl,
apply ap eq_of_iso, apply iso_eq, esimp,
apply nat_trans_eq, intro c',
apply eq_of_homotopy, esimp [yoneda_embedding], intro f,
rewrite [category.category.id_left], apply id_right}
2015-09-02 23:41:19 +00:00
end
definition is_representable {C : Precategory} (F : Cᵒᵖ ⇒ cset) := Σ(c : C), ɏ c ≅ F
set_option unifier.max_steps 25000 -- TODO: fix this
definition is_hprop_representable {C : Category} (F : Cᵒᵖ ⇒ cset)
: is_hprop (is_representable F) :=
begin
fapply is_trunc_equiv_closed,
{ transitivity (Σc, ɏ c = F),
{ exact fiber.sigma_char ɏ F},
{ apply sigma.sigma_equiv_sigma_id, intro c, apply eq_equiv_iso}},
{ apply function.is_hprop_fiber_of_is_embedding, apply is_embedding_yoneda_embedding}
end
end yoneda