lean2/library/init/reserved_notation.lean

138 lines
4.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
-/
2014-12-01 04:34:12 +00:00
prelude
import init.datatypes
notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r
/-
Global declarations of right binding strength
If a module reassigns these, it will be incompatible with other modules that adhere to these
conventions.
When hovering over a symbol, use "C-c C-k" to see how to input it.
-/
definition std.prec.max : num := 1024 -- the strength of application, identifiers, (, [, etc.
definition std.prec.arrow : num := 25
/-
The next definition is "max + 10". It can be used e.g. for postfix operations that should
be stronger than application.
-/
definition std.prec.max_plus :=
num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ
(num.succ std.prec.max)))))))))
/- Logical operations and relations -/
reserve prefix `¬`:40
reserve prefix `~`:40
2015-09-30 15:06:31 +00:00
reserve infixr ` ∧ `:35
reserve infixr ` /\ `:35
reserve infixr ` \/ `:30
reserve infixr ` `:30
reserve infix ` <-> `:20
reserve infix ` ↔ `:20
reserve infix ` = `:50
reserve infix ` ≠ `:50
reserve infix ` ≈ `:50
reserve infix ` ~ `:50
reserve infix ` ≡ `:50
reserve infixr ` ∘ `:60 -- input with \comp
reserve postfix `⁻¹`:std.prec.max_plus -- input with \sy or \-1 or \inv
2015-09-30 15:06:31 +00:00
reserve infixl ` ⬝ `:75
reserve infixr ` ▸ `:75
reserve infixr ` ▹ `:75
/- types and type constructors -/
2015-09-30 15:06:31 +00:00
reserve infixl ` ⊎ `:25
reserve infixl ` × `:30
/- arithmetic operations -/
2015-09-30 15:06:31 +00:00
reserve infixl ` + `:65
reserve infixl ` - `:65
reserve infixl ` * `:70
reserve infixl ` div `:70
reserve infixl ` mod `:70
reserve infixl ` / `:70
reserve prefix `-`:100
2015-09-30 15:06:31 +00:00
reserve infix ` ^ `:80
2015-09-30 15:06:31 +00:00
reserve infix ` <= `:50
reserve infix ` ≤ `:50
reserve infix ` < `:50
reserve infix ` >= `:50
reserve infix ` ≥ `:50
reserve infix ` > `:50
/- boolean operations -/
2015-09-30 15:06:31 +00:00
reserve infixl ` && `:70
reserve infixl ` || `:65
/- set operations -/
2015-09-30 15:06:31 +00:00
reserve infix ` ∈ `:50
reserve infix ` ∉ `:50
reserve infixl ` ∩ `:70
reserve infixl ` `:65
reserve infix ` ⊆ `:50
reserve infix ` ⊇ `:50
/- other symbols -/
2015-09-30 15:06:31 +00:00
reserve infix ` `:50
reserve infixl ` ++ `:65
reserve infixr ` :: `:65
structure has_add [class] (A : Type) := (add : A → A → A)
structure has_mul [class] (A : Type) := (mul : A → A → A)
structure has_inv [class] (A : Type) := (inv : A → A)
structure has_neg [class] (A : Type) := (neg : A → A)
structure has_sub [class] (A : Type) := (sub : A → A → A)
structure has_division [class] (A : Type) := (division : A → A → A)
structure has_divides [class] (A : Type) := (divides : A → A → A)
structure has_modulo [class] (A : Type) := (modulo : A → A → A)
structure has_dvd [class] (A : Type) := (dvd : A → A → Prop)
structure has_le [class] (A : Type) := (le : A → A → Prop)
structure has_lt [class] (A : Type) := (lt : A → A → Prop)
definition add {A : Type} [s : has_add A] : A → A → A := has_add.add
definition mul {A : Type} [s : has_mul A] : A → A → A := has_mul.mul
definition sub {A : Type} [s : has_sub A] : A → A → A := has_sub.sub
definition division {A : Type} [s : has_division A] : A → A → A := has_division.division
definition divides {A : Type} [s : has_divides A] : A → A → A := has_divides.divides
definition modulo {A : Type} [s : has_modulo A] : A → A → A := has_modulo.modulo
definition dvd {A : Type} [s : has_dvd A] : A → A → Prop := has_dvd.dvd
definition neg {A : Type} [s : has_neg A] : A → A := has_neg.neg
definition inv {A : Type} [s : has_inv A] : A → A := has_inv.inv
definition le {A : Type} [s : has_le A] : A → A → Prop := has_le.le
definition lt {A : Type} [s : has_lt A] : A → A → Prop := has_lt.lt
definition ge [reducible] {A : Type} [s : has_le A] (a b : A) : Prop := le b a
definition gt [reducible] {A : Type} [s : has_lt A] (a b : A) : Prop := lt b a
infix + := add
infix * := mul
infix - := sub
infix / := division
infix div := divides
infix := dvd
infix mod := modulo
prefix - := neg
postfix ⁻¹ := inv
infix ≤ := le
infix ≥ := ge
infix < := lt
infix > := gt