lean2/library/data/real/complete.lean

861 lines
26 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
At this point, we no longer proceed constructively: this file makes heavy use of decidability,
excluded middle, and Hilbert choice.
Here, we show that is complete.
-/
import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat
import logic.choice
open -[coercions] rat
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1
open -[coercions] nat
open eq.ops
open pnat
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
namespace s
theorem rat_approx_l1 {s : seq} (H : regular s) :
∀ n : +, ∃ q : , ∃ N : +, ∀ m : +, m ≥ N → abs (s m - q) ≤ n⁻¹ :=
begin
intro n,
existsi (s (2 * n)),
existsi 2 * n,
intro m Hm,
apply rat.le.trans,
apply H,
rewrite -(add_halves n),
apply rat.add_le_add_right,
apply inv_ge_of_le Hm
end
theorem rat_approx {s : seq} (H : regular s) :
∀ n : +, ∃ q : , s_le (s_abs (sadd s (sneg (const q)))) (const n⁻¹) :=
begin
intro m,
rewrite ↑s_le,
apply exists.elim (rat_approx_l1 H m),
intro q Hq,
apply exists.elim Hq,
intro N HN,
existsi q,
apply nonneg_of_bdd_within,
repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg
| assumption),
intro n,
existsi N,
intro p Hp,
rewrite ↑[sadd, sneg, s_abs, const],
apply rat.le.trans,
rotate 1,
apply rat.sub_le_sub_left,
apply HN,
apply pnat.le.trans,
apply Hp,
rewrite -*pnat.mul.assoc,
apply pnat.mul_le_mul_left,
rewrite [sub_self, -neg_zero],
apply neg_le_neg,
apply rat.le_of_lt,
apply inv_pos
end
definition r_abs (s : reg_seq) : reg_seq :=
reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s))
theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_abs s ≡ s_abs t :=
begin
rewrite [↑equiv at *],
intro n,
rewrite ↑s_abs,
apply rat.le.trans,
apply abs_abs_sub_abs_le_abs_sub,
apply Heq
end
theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) :=
abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
theorem r_rat_approx (s : reg_seq) :
∀ n : +, ∃ q : , r_le (r_abs (radd s (rneg (r_const q)))) (r_const n⁻¹) :=
rat_approx (reg_seq.is_reg s)
theorem const_bound {s : seq} (Hs : regular s) (n : +) :
s_le (s_abs (sadd s (sneg (const (s n))))) (const n⁻¹) :=
begin
rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const],
intro m,
apply iff.mp !rat.le_add_iff_neg_le_sub_left,
apply rat.le.trans,
apply Hs,
apply rat.add_le_add_right,
rewrite -*pnat.mul.assoc,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem abs_const (a : ) : const (abs a) ≡ s_abs (const a) :=
begin
rewrite [↑s_abs, ↑const],
apply equiv.refl
end
theorem r_abs_const (a : ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a
theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_abs s ≡ s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply Hs,
intro j,
rewrite ↑s_abs,
let Hz' := s_nonneg_of_ge_zero Hs Hz,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero],
apply rat.le_of_lt,
apply inv_pos,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn],
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply rat.neg_le_neg; apply Hz'),
rewrite *rat.neg_neg,
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite pnat.add_halves,
apply rat.le.refl
end
theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) : s_abs s ≡ sneg s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply reg_neg_reg Hs,
intro j,
rewrite [↑s_abs, ↑s_le at Hz],
have Hz' : nonneg (sneg s), begin
apply nonneg_of_nonneg_equiv,
rotate 3,
apply Hz,
rotate 2,
apply s_zero_add,
repeat (apply Hs | apply zero_is_reg | apply reg_neg_reg | apply reg_add_reg)
end,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn],
rewrite [↑nonneg at Hz', ↑sneg at Hz'],
apply rat.le.trans,
apply rat.add_le_add,
repeat apply (rat.le_of_neg_le_neg !Hz'),
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite pnat.add_halves,
apply rat.le.refl,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self,
abs_zero],
apply rat.le_of_lt,
apply inv_pos
end
theorem r_equiv_abs_of_ge_zero {s : reg_seq} (Hz : r_le r_zero s) : requiv (r_abs s) s :=
equiv_abs_of_ge_zero (reg_seq.is_reg s) Hz
theorem r_equiv_neg_abs_of_le_zero {s : reg_seq} (Hz : r_le s r_zero) : requiv (r_abs s) (-s) :=
equiv_neg_abs_of_le_zero (reg_seq.is_reg s) Hz
end s
namespace real
open [classes] s
theorem p_add_fractions (n : +) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ :=
assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial,
by rewrite[*inv_mul_eq_mul_inv,-*rat.right_distrib,T,rat.one_mul]
theorem rewrite_helper9 (a b c : ) : b - c = (b - a) - (c - a) :=
by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel]
theorem rewrite_helper10 (a b c d : ) : c - d = (c - a) + (a - b) + (b - d) :=
by rewrite[*add_sub,*sub_add_cancel]
noncomputable definition rep (x : ) : s.reg_seq := some (quot.exists_rep x)
definition re_abs (x : ) : :=
quot.lift_on x (λ a, quot.mk (s.r_abs a)) (take a b Hab, quot.sound (s.r_abs_well_defined Hab))
theorem r_abs_nonneg {x : } : zero ≤ x → re_abs x = x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_abs_of_ge_zero Ha))
theorem r_abs_nonpos {x : } : x ≤ zero → re_abs x = -x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha))
theorem abs_const' (a : ) : of_rat (rat.abs a) = re_abs (of_rat a) := quot.sound (s.r_abs_const a)
theorem re_abs_is_abs : re_abs = real.abs := funext
(begin
intro x,
apply eq.symm,
let Hor := decidable.em (zero ≤ x),
apply or.elim Hor,
intro Hor1,
rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1],
intro Hor2,
have Hor2' : x ≤ zero, from le_of_lt (lt_of_not_ge Hor2),
rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2']
end)
theorem abs_const (a : ) : of_rat (rat.abs a) = abs (of_rat a) :=
by rewrite -re_abs_is_abs -- ????
theorem rat_approx' (x : ) : ∀ n : +, ∃ q : , re_abs (x - of_rat q) ≤ of_rat n⁻¹ :=
quot.induction_on x (λ s n, s.r_rat_approx s n)
theorem rat_approx (x : ) : ∀ n : +, ∃ q : , abs (x - of_rat q) ≤ of_rat n⁻¹ :=
by rewrite -re_abs_is_abs; apply rat_approx'
noncomputable definition approx (x : ) (n : +) := some (rat_approx x n)
theorem approx_spec (x : ) (n : +) : abs (x - (of_rat (approx x n))) ≤ of_rat n⁻¹ :=
some_spec (rat_approx x n)
theorem approx_spec' (x : ) (n : +) : abs ((of_rat (approx x n)) - x) ≤ of_rat n⁻¹ :=
by rewrite abs_sub; apply approx_spec
notation `r_seq` := + →
noncomputable definition converges_to (X : r_seq) (a : ) (N : + → +) :=
∀ k : +, ∀ n : +, n ≥ N k → abs (X n - a) ≤ of_rat k⁻¹
noncomputable definition cauchy (X : r_seq) (M : + → +) :=
∀ k : +, ∀ m n : +, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ of_rat k⁻¹
theorem cauchy_of_converges_to {X : r_seq} {a : } {N : + → +} (Hc : converges_to X a N) :
cauchy X (λ k, N (2 * k)) :=
begin
intro k m n Hm Hn,
rewrite (rewrite_helper9 a),
apply le.trans,
apply abs_add_le_abs_add_abs,
apply le.trans,
apply add_le_add,
apply Hc,
apply Hm,
krewrite abs_neg,
apply Hc,
apply Hn,
xrewrite of_rat_add,
apply of_rat_le_of_rat_of_le,
rewrite pnat.add_halves,
apply rat.le.refl
end
definition Nb (M : + → +) := λ k, pnat.max (3 * k) (M (2 * k))
theorem Nb_spec_right (M : + → +) (k : +) : M (2 * k) ≤ Nb M k := !max_right
theorem Nb_spec_left (M : + → +) (k : +) : 3 * k ≤ Nb M k := !max_left
noncomputable definition lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : + → :=
λ k, approx (X (Nb M k)) (2 * k)
theorem lim_seq_reg_helper {X : r_seq} {M : + → +} (Hc : cauchy X M) {m n : +}
(Hmn : M (2 * n) ≤M (2 * m)) :
abs (of_rat (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
(X (Nb M n) - of_rat (lim_seq Hc n)) ≤ of_rat (m⁻¹ + n⁻¹) :=
begin
apply le.trans,
apply add_le_add_three,
apply approx_spec',
rotate 1,
apply approx_spec,
rotate 1,
apply Hc,
rotate 1,
apply Nb_spec_right,
rotate 1,
apply pnat.le.trans,
apply Hmn,
apply Nb_spec_right,
rewrite [*of_rat_add, rat.add.assoc, pnat.add_halves],
apply of_rat_le_of_rat_of_le,
apply rat.add_le_add_right,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem lim_seq_reg {X : r_seq} {M : + → +} (Hc : cauchy X M) : s.regular (lim_seq Hc) :=
begin
rewrite ↑s.regular,
intro m n,
apply le_of_rat_le_of_rat,
rewrite [abs_const, -of_rat_sub, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
apply real.le.trans,
apply abs_add_three,
let Hor := decidable.em (M (2 * m) ≥ M (2 * n)),
apply or.elim Hor,
intro Hor1,
apply lim_seq_reg_helper Hc Hor1,
intro Hor2,
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub, -- ???
rat.add.comm, add_comm_three],
apply lim_seq_reg_helper Hc Hor2'
end
theorem lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.s_le (s.s_abs (s.sadd (lim_seq Hc) (s.sneg (s.const (lim_seq Hc k))) )) (s.const k⁻¹) :=
begin
apply s.const_bound,
apply lim_seq_reg
end
noncomputable definition r_lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : s.reg_seq :=
s.reg_seq.mk (lim_seq Hc) (lim_seq_reg Hc)
theorem r_lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.r_le (s.r_abs (( s.radd (r_lim_seq Hc) (s.rneg (s.r_const ((s.reg_seq.sq (r_lim_seq Hc)) k)))))) (s.r_const (k)⁻¹) :=
lim_seq_spec Hc k
noncomputable definition lim {X : r_seq} {M : + → +} (Hc : cauchy X M) : :=
quot.mk (r_lim_seq Hc)
theorem re_lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
re_abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
r_lim_seq_spec Hc k
theorem lim_spec' {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
by rewrite -re_abs_is_abs; apply re_lim_spec
theorem lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((of_rat ((lim_seq Hc) k)) - (lim Hc)) ≤ of_rat (k)⁻¹ :=
by rewrite abs_sub; apply lim_spec'
theorem converges_of_cauchy {X : r_seq} {M : + → +} (Hc : cauchy X M) :
converges_to X (lim Hc) (Nb M) :=
begin
intro k n Hn,
rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq Hc n))),
apply le.trans,
apply abs_add_three,
apply le.trans,
apply add_le_add_three,
apply Hc,
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_right,
have HMk : M (2 * k) ≤ Nb M n, begin
apply pnat.le.trans,
apply Nb_spec_right,
apply pnat.le.trans,
apply Hn,
apply pnat.le.trans,
apply mul_le_mul_left 3,
apply Nb_spec_left
end,
apply HMk,
rewrite ↑lim_seq,
apply approx_spec,
apply lim_spec,
rewrite 2 of_rat_add,
apply of_rat_le_of_rat_of_le,
apply rat.le.trans,
apply rat.add_le_add_three,
apply rat.le.refl,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
apply inv_ge_of_le,
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
rewrite [-*pnat.mul.assoc, p_add_fractions],
apply rat.le.refl
end
--------------------------------------------------
-- supremum property
-- this development roughly follows the proof of completeness done in Isabelle.
section supremum
open prod nat
local postfix `~` := nat_of_pnat
local notation 2 := (1 : ) + 1
parameter X : → Prop
definition rpt {A : Type} (op : A → A) : → A → A
| rpt 0 := λ a, a
| rpt (succ k) := λ a, op (rpt k a)
definition ub (x : ) := ∀ y : , X y → y ≤ x
definition bounded := ∃ x : , ub x
definition sup (x : ) := ub x ∧ ∀ y : , ub y → x ≤ y
parameter elt :
hypothesis inh : X elt
parameter bound :
hypothesis bdd : ub bound
parameter floor : → int
parameter ceil : → int
hypothesis floor_spec : ∀ x : , of_rat (of_int (floor x)) ≤ x
hypothesis ceil_spec : ∀ x : , of_rat (of_int (ceil x)) ≥ x
hypothesis floor_succ : ∀ x : , int.lt (floor (x - 1)) (floor x)
hypothesis ceil_succ : ∀ x : , int.lt (ceil x) (ceil (x + 1))
include inh bdd floor_spec ceil_spec floor_succ ceil_succ
-- this should exist somewhere, no? I can't find it
theorem not_forall_of_exists_not {A : Type} {P : A → Prop} (H : ∃ a : A, ¬ P a) :
¬ ∀ a : A, P a :=
begin
intro Hall,
cases H with [a, Ha],
apply Ha (Hall a)
end
definition avg (a b : ) := a / 2 + b / 2
definition bisect (ab : × ) :=
if ub (avg (pr1 ab) (pr2 ab)) then
(pr1 ab, (avg (pr1 ab) (pr2 ab)))
else
(avg (pr1 ab) (pr2 ab), pr2 ab)
set_option pp.coercions true
definition under : := of_int (floor (elt - 1))
theorem under_spec1 : of_rat under < elt :=
let fs := floor_succ in
have H : of_rat under < of_rat (of_int (floor elt)), begin
apply of_rat_lt_of_rat_of_lt,
apply iff.mpr !of_int_lt_of_int,
apply fs
end,
lt_of_lt_of_le H !floor_spec
theorem under_spec : ¬ ub under :=
using inh,
using floor_spec,
using floor_succ,
begin
rewrite ↑ub,
apply not_forall_of_exists_not,
existsi elt,
apply iff.mpr not_implies_iff_and_not,
apply and.intro,
apply inh,
apply not_le_of_gt under_spec1
end
definition over : := of_int (ceil (bound + 1)) -- b
theorem over_spec1 : bound < of_rat over :=
let cs := ceil_succ in
have H : of_rat (of_int (ceil bound)) < of_rat over, begin
apply of_rat_lt_of_rat_of_lt,
apply iff.mpr !of_int_lt_of_int,
apply cs
end,
lt_of_le_of_lt !ceil_spec H
theorem over_spec : ub over :=
using bdd,
using ceil_spec,
using ceil_succ,
begin
rewrite ↑ub,
intro y Hy,
apply le_of_lt,
apply lt_of_le_of_lt,
apply bdd,
apply Hy,
apply over_spec1
end
definition under_seq := λ n : , pr1 (rpt bisect n (under, over)) -- A
definition over_seq := λ n : , pr2 (rpt bisect n (under, over)) -- B
definition avg_seq := λ n : , avg (over_seq n) (under_seq n) -- C
theorem avg_symm (n : ) : avg_seq n = avg (under_seq n) (over_seq n) :=
by rewrite [↑avg_seq, ↑avg, rat.add.comm]
theorem over_0 : over_seq 0 = over := rfl
theorem under_0 : under_seq 0 = under := rfl
theorem succ_helper (n : ) : avg (pr1 (rpt bisect n (under, over))) (pr2 (rpt bisect n (under, over))) = avg_seq n :=
by rewrite avg_symm
theorem under_succ (n : ) : under_seq (succ n) =
(if ub (avg_seq n) then under_seq n else avg_seq n) :=
begin
cases (decidable.em (ub (avg_seq n))) with [Hub, Hub],
rewrite [if_pos Hub],
have H : pr1 (bisect (rpt bisect n (under, over))) = under_seq n, by
rewrite [↑under_seq, ↑bisect at {2}, -succ_helper at Hub, if_pos Hub],
apply H,
rewrite [if_neg Hub],
have H : pr1 (bisect (rpt bisect n (under, over))) = avg_seq n, by
rewrite [↑bisect at {2}, -succ_helper at Hub, if_neg Hub, avg_symm],
apply H
end
theorem over_succ (n : ) : over_seq (succ n) =
(if ub (avg_seq n) then avg_seq n else over_seq n) :=
begin
cases (decidable.em (ub (avg_seq n))) with [Hub, Hub],
rewrite [if_pos Hub],
have H : pr2 (bisect (rpt bisect n (under, over))) = avg_seq n, by
rewrite [↑bisect at {2}, -succ_helper at Hub, if_pos Hub, avg_symm],
apply H,
rewrite [if_neg Hub],
have H : pr2 (bisect (rpt bisect n (under, over))) = over_seq n, by
rewrite [↑over_seq, ↑bisect at {2}, -succ_helper at Hub, if_neg Hub],
apply H
end
-- rat.pow_zero refers to algebra.pow?
theorem rat.pow_zero (a : ) : rat.pow a 0 = 1 := sorry
theorem rat.pow_pos {a : } (H : a > 0) (n : ) : rat.pow a n > 0 := sorry
theorem rat.pow_one (a : ) : rat.pow a 1 = a := sorry
theorem rat.pow_add (a : ) (m : ) : ∀ n, rat.pow a (m + n) = rat.pow a m * rat.pow a n := sorry
theorem div_two_sub_self (a : ) : a / 2 - a = - (a / 2) := sorry
theorem sub_self_div_two (a : ) : a - a / 2 = a / 2 := sorry
theorem rat.div_sub_div_same (a b c : ) : (a / c) - (b / c) = (a - b) / c := sorry
theorem width (n : ) : over_seq n - under_seq n = (over - under) / (rat.pow 2 n) :=
nat.induction_on n
(by rewrite [over_0, under_0, rat.pow_zero, rat.div_one])
(begin
intro a Ha,
rewrite [over_succ, under_succ],
let Hou := calc
(over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / rat.pow 2 a) / 2 : by rewrite [rat.div_sub_div_same, Ha]
... = (over - under) / (rat.pow 2 a * 2) : rat.div_div_eq_div_mul (rat.ne_of_gt (rat.pow_pos dec_trivial _)) dec_trivial
... = (over - under) / rat.pow 2 (a + 1) : by rewrite rat.pow_add,
cases (decidable.em (ub (avg_seq a))),
rewrite [*if_pos a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.add.assoc, div_two_sub_self],
rewrite [*if_neg a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.sub_add_eq_sub_sub, sub_self_div_two]
end)
theorem binary_nat_bound (a : ) : of_nat a ≤ (rat.pow 2 a) :=
nat.induction_on a (rat.zero_le_one) (begin apply sorry end)
theorem binary_bound (a : ) : ∃ n : , a ≤ rat.pow 2 n :=
exists.intro (ubound a) (calc
a ≤ of_nat (ubound a) : ubound_ge
... ≤ rat.pow 2 (ubound a) : binary_nat_bound)
theorem rat_of_pnat_add {k : } (H : succ k > 0) : rat_of_pnat (subtype.tag (succ k) H) = (rat.of_nat k) + 1 := sorry
theorem rat_power_two_le (k : +) : rat_of_pnat k ≤ rat.pow 2 k~ :=
begin
apply subtype.rec_on k,
intros n Hn,
induction n,
apply absurd Hn !nat.not_lt_self,
rewrite (rat_of_pnat_add Hn),
apply sorry
end
theorem width_narrows : ∃ n : , over_seq n - under_seq n ≤ 1 :=
begin
cases binary_bound (over - under) with [a, Ha],
existsi a,
rewrite (width a),
apply rat.div_le_of_le_mul,
apply rat.pow_pos dec_trivial,
rewrite rat.mul_one,
apply Ha
end
definition over' := over_seq (some width_narrows)
definition under' := under_seq (some width_narrows)
definition over_seq' := λ n, over_seq (n + some width_narrows)
definition under_seq' := λ n, under_seq (n + some width_narrows)
theorem width' (n : ) : over_seq' n - under_seq' n ≤ 1 / rat.pow 2 n := sorry
--theorem twos (y r : ) (H : 0 < r) : ∃ n : , y / (rat.pow 2 n) < r := sorry
theorem PA (n : ) : ¬ ub (under_seq n) :=
nat.induction_on n
(by rewrite under_0; apply under_spec)
(begin
intro a Ha,
rewrite under_succ,
cases (decidable.em (ub (avg_seq a))),
rewrite (if_pos a_1),
assumption,
rewrite (if_neg a_1),
assumption
end)
theorem PB (n : ) : ub (over_seq n) :=
nat.induction_on n
(by rewrite over_0; apply over_spec)
(begin
intro a Ha,
rewrite over_succ,
cases (decidable.em (ub (avg_seq a))),
rewrite (if_pos a_1),
assumption,
rewrite (if_neg a_1),
assumption
end)
theorem under_lt_over : under < over :=
begin
cases (exists_not_of_not_forall under_spec) with [x, Hx],
cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu],
apply lt_of_rat_lt_of_rat,
apply lt_of_lt_of_le,
apply lt_of_not_ge Hxu,
apply over_spec _ HXx
end
theorem under_seq_lt_over_seq : ∀ m n : , under_seq m < over_seq n :=
begin
intros,
cases (exists_not_of_not_forall (PA m)) with [x, Hx],
cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu],
apply lt_of_rat_lt_of_rat,
apply lt_of_lt_of_le,
apply lt_of_not_ge Hxu,
apply PB,
apply HXx
end
theorem under_seq_lt_over_seq_single : ∀ n : , under_seq n < over_seq n :=
by intros; apply under_seq_lt_over_seq
theorem under_seq'_lt_over_seq' : ∀ m n : , under_seq' m < over_seq' n :=
by intros; apply under_seq_lt_over_seq
theorem under_seq'_lt_over_seq'_single : ∀ n : , under_seq' n < over_seq' n :=
by intros; apply under_seq_lt_over_seq
--theorem over_dist (n : ) : abs (over - over_seq n) ≤ (over - under) / rat.pow 2 n := sorry
theorem under_seq_mono_helper (i k : ) : under_seq i ≤ under_seq (i + k) :=
(nat.induction_on k
(by rewrite nat.add_zero; apply rat.le.refl)
(begin
intros a Ha,
rewrite [add_succ, under_succ],
cases (decidable.em (ub (avg_seq (i + a)))) with [Havg, Havg],
rewrite (if_pos Havg),
apply Ha,
rewrite [if_neg Havg, ↑avg_seq, ↑avg],
apply rat.le.trans,
apply Ha,
rewrite -rat.add_halves at {1},
apply rat.add_le_add_right,
apply rat.div_le_div_of_le_of_pos,
apply rat.le_of_lt,
apply under_seq_lt_over_seq,
apply dec_trivial
end))
theorem under_seq_mono (i j : ) (H : i ≤ j) : under_seq i ≤ under_seq j :=
begin
cases le.elim H with [k, Hk'],
rewrite -Hk',
apply under_seq_mono_helper
end
theorem over_seq_mono_helper (i k : ) : over_seq (i + k) ≤ over_seq i :=
nat.induction_on k
(by rewrite nat.add_zero; apply rat.le.refl)
(begin
intros a Ha,
rewrite [add_succ, over_succ],
cases (decidable.em (ub (avg_seq (i + a)))) with [Havg, Havg],
rewrite [if_pos Havg, ↑avg_seq, ↑avg],
apply rat.le.trans,
rotate 1,
apply Ha,
rotate 1,
rewrite -{over_seq (i + a)}rat.add_halves at {2},
apply rat.add_le_add_left,
apply rat.div_le_div_of_le_of_pos,
apply rat.le_of_lt,
apply under_seq_lt_over_seq,
apply dec_trivial,
rewrite [if_neg Havg],
apply Ha
end)
theorem over_seq_mono (i j : ) (H : i ≤ j) : over_seq j ≤ over_seq i :=
begin
cases le.elim H with [k, Hk'],
rewrite -Hk',
apply over_seq_mono_helper
end
theorem rat_power_two_inv_ge (k : +) : 1 / rat.pow 2 k~ ≤ k⁻¹ :=
rat.div_le_div_of_le !rat_of_pnat_is_pos !rat_power_two_le
open s
theorem regular_lemma_helper {s : seq} {m n : +} (Hm : m ≤ n)
(H : ∀ n i : +, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) :
rat.abs (s m - s n) ≤ m⁻¹ + n⁻¹ :=
begin
cases (H m n Hm) with [T1under, T1over],
cases (H m m (!pnat.le.refl)) with [T2under, T2over],
apply rat.le.trans,
apply rat.dist_bdd_within_interval,
apply under_seq'_lt_over_seq'_single,
rotate 1,
repeat assumption,
apply rat.le.trans,
apply width',
apply rat.le.trans,
apply rat_power_two_inv_ge,
apply rat.le_add_of_nonneg_right,
apply rat.le_of_lt (!inv_pos)
end
theorem regular_lemma (s : seq) (H : ∀ n i : +, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) :
regular s :=
begin
rewrite ↑regular,
intros,
cases (decidable.em (m ≤ n)) with [Hm, Hn],
apply regular_lemma_helper Hm H,
let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H,
rewrite [rat.abs_sub at T, {n⁻¹ + _}rat.add.comm at T],
exact T
end
definition p_under_seq : seq := λ n : +, under_seq' n~
definition p_over_seq : seq := λ n : +, over_seq' n~
theorem under_seq_regular : regular p_under_seq :=
begin
apply regular_lemma,
intros n i Hni,
apply and.intro,
apply under_seq_mono,
apply nat.add_le_add_right Hni,
apply rat.le_of_lt,
apply under_seq_lt_over_seq
end
theorem over_seq_regular : regular p_over_seq :=
begin
apply regular_lemma,
intros n i Hni,
apply and.intro,
apply rat.le_of_lt,
apply under_seq_lt_over_seq,
apply over_seq_mono,
apply nat.add_le_add_right Hni
end
definition sup_over : := quot.mk (reg_seq.mk p_over_seq over_seq_regular)
definition sup_under : := quot.mk (reg_seq.mk p_under_seq under_seq_regular)
theorem over_bound : ub sup_over :=
begin
rewrite ↑ub,
intros y Hy,
apply le_of_le_reprs,
intro n,
apply PB,
apply Hy
end
theorem under_lowest_bound : ∀ y : , ub y → sup_under ≤ y :=
begin
intros y Hy,
apply le_of_reprs_le,
intro n,
cases (exists_not_of_not_forall (PA _)) with [x, Hx],
cases (iff.mp not_implies_iff_and_not Hx) with [HXx, Hxn],
apply le.trans,
apply le_of_lt,
apply lt_of_not_ge Hxn,
apply Hy,
apply HXx
end
theorem under_over_equiv : p_under_seq ≡ p_over_seq :=
begin
rewrite ↑equiv,
intros,
apply rat.le.trans,
have H : p_under_seq n < p_over_seq n, from !under_seq_lt_over_seq,
rewrite [rat.abs_of_neg (iff.mpr !rat.sub_neg_iff_lt H), rat.neg_sub],
apply width',
apply rat.le.trans,
apply rat_power_two_inv_ge,
apply rat.le_add_of_nonneg_left,
apply rat.le_of_lt !inv_pos
end
theorem under_over_eq : sup_under = sup_over := quot.sound under_over_equiv
theorem supremum_of_complete : ∃ x : , sup x :=
exists.intro sup_over (and.intro over_bound (under_over_eq ▸ under_lowest_bound))
end supremum
end real