Remark: on Windows, Ctrl-D does not seem to work.
So, this commit also changes the Lean startup message.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
When using tactics for proving theorems, a common pattern is
Theorem T : <proposition> := _.
apply <tactic>.
...
done.
This commit allows the user to write the simplified form:
Theorem T : <proposition>.
apply <tactic>.
...
done.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
In expression code blocks, we do not have to write a "return".
After this commit, the argument of an apply command is a Lua expression instead of a Lua block of code. That is, we can now write
apply (** REPEAT(ORELSE(imp_tactic, conj_tactic, conj_hyp_tactic, assumption_tactic)) **)
instead of
apply (** return REPEAT(ORELSE(imp_tactic, conj_tactic, conj_hyp_tactic, assumption_tactic)) **)
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
For example, after this commit, we can write
simple_tac = REPEAT(ORELSE(imp_tactic, conj_tactic)) .. assumption_tactic
instead of
simple_tac = REPEAT(ORELSE(imp_tactic(), conj_tactic())) .. assumption_tactic()
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The following call sequence is possible:
C++ -> Lua -> C++ -> Lua -> C++
The first block of C++ is the Lean main function.
The main function invokes the Lua interpreter.
The Lua interpreter invokes a C++ Lean API.
Then the Lean API invokes a callback implemented in Lua.
The Lua callback invokes another Lean API.
Now, suppose the Lean API throws an exception.
We want the C++ exception to propagate over the mixed C++/Lua call stack.
We use the clone/rethrow exception idiom to achieve this goal.
Before this commit, the C++ exceptions were converted into strings
using the method what(), and then they were propagated over the Lua
stack using lua_error. A lua_error was then converted into a lua_exception when going back to C++.
This solution was very unsatisfactory, since all C++ exceptions were being converted into a lua_exception, and consequently the structure of the exception was being lost.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The idea is to make it clear that io_state is distinguish it from proof_state, and from leanlua_state.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The main motivation is to break the remove the dependency frontends/lean <-- bindings/lua.
This dependency is undesirable because we want to expose the frontends/lean parser and pretty printer objects at bindings/lua.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
Instead of having m_interrupted flags in several components. We use a thread_local global variable.
The new approach is much simpler to get right since there is no risk of "forgetting" to propagate
the set_interrupt method to sub-components.
The plan is to support set_interrupt methods and m_interrupted flags only in tactic objects.
We need to support them in tactics and tacticals because we want to implement combinators/tacticals such as (try_for T M) that fails if tactic T does not finish in M ms.
For example, consider the tactic:
try-for (T1 ORELSE T2) 5
It tries the tactic (T1 ORELSE T2) for 5ms.
Thus, if T1 does not finish after 5ms an interrupt request is sent, and T1 is interrupted.
Now, if you do not have a m_interrupted flag marking each tactic, the ORELSE combinator will try T2.
The set_interrupt method for ORELSE tactical should turn on the m_interrupted flag.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>