lean2/hott/algebra/category/functor/yoneda.hlean

153 lines
5.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Yoneda embedding and Yoneda lemma
-/
import .examples .attributes
open category eq functor prod.ops is_trunc iso is_equiv equiv category.set nat_trans lift
namespace yoneda
/-
These attributes make sure that the fields of the category "set" reduce to the right things
However, we don't want to have them globally, because that will unfold the composition g ∘ f
in a Category to category.category.comp g f
-/
local attribute category.to_precategory [constructor]
-- should this be defined as "yoneda_embedding Cᵒᵖ"?
definition contravariant_yoneda_embedding [constructor] [reducible]
(C : Precategory) : Cᵒᵖ ⇒ cset ^c C :=
functor_curry !hom_functor
/-
we use (change_fun) to make sure that (to_fun_ob (yoneda_embedding C) c) will reduce to
(hom_functor_left c) instead of (functor_curry_rev_ob (hom_functor C) c)
-/
definition yoneda_embedding [constructor] (C : Precategory) : C ⇒ cset ^c Cᵒᵖ :=
--(functor_curry_rev !hom_functor)
change_fun
(functor_curry_rev !hom_functor)
hom_functor_left
nat_trans_hom_functor_left
idp
idpo
2015-09-02 23:41:19 +00:00
notation `ɏ` := yoneda_embedding _
definition yoneda_lemma_hom [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset)
2015-09-02 23:41:19 +00:00
(x : trunctype.carrier (F c)) : ɏ c ⟹ F :=
begin
fapply nat_trans.mk,
{ intro c', esimp [yoneda_embedding], intro f, exact F f x},
{ intro c' c'' f, esimp [yoneda_embedding], apply eq_of_homotopy, intro f',
refine _ ⬝ ap (λy, to_fun_hom F y x) !(@id_left _ C)⁻¹,
exact ap10 !(@respect_comp Cᵒᵖ cset)⁻¹ x}
2015-09-02 23:41:19 +00:00
end
definition yoneda_lemma_equiv [constructor] {C : Precategory} (c : C)
(F : Cᵒᵖ ⇒ cset) : hom (ɏ c) F ≃ lift (trunctype.carrier (to_fun_ob F c)) :=
2015-09-02 23:41:19 +00:00
begin
fapply equiv.MK,
{ intro η, exact up (η c id)},
{ intro x, induction x with x, exact yoneda_lemma_hom c F x},
{ exact abstract begin intro x, induction x with x, esimp, apply ap up,
exact ap10 !respect_id x end end},
{ exact abstract begin intro η, esimp, apply nat_trans_eq,
2015-09-02 23:41:19 +00:00
intro c', esimp, apply eq_of_homotopy,
intro f,
2015-09-02 23:41:19 +00:00
transitivity (F f ∘ η c) id, reflexivity,
rewrite naturality, esimp [yoneda_embedding], rewrite [id_left], apply ap _ !id_left end end},
end
definition yoneda_lemma {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset) :
homset (ɏ c) F ≅ functor_lift (F c) :=
begin
apply iso_of_equiv, esimp, apply yoneda_lemma_equiv,
end
theorem yoneda_lemma_natural_ob {C : Precategory} (F : Cᵒᵖ ⇒ cset) {c c' : C} (f : c' ⟶ c)
(η : ɏ c ⟹ F) :
to_fun_hom (functor_lift ∘f F) f (to_hom (yoneda_lemma c F) η) =
to_hom (yoneda_lemma c' F) (η ∘n to_fun_hom ɏ f) :=
begin
esimp [yoneda_lemma,yoneda_embedding], apply ap up,
transitivity (F f ∘ η c) id, reflexivity,
rewrite naturality,
esimp [yoneda_embedding],
apply ap (η c'),
esimp [yoneda_embedding, Opposite],
rewrite [+id_left,+id_right],
end
-- TODO: Investigate what is the bottleneck to type check the next theorem
-- attribute yoneda_lemma functor_lift Precategory_Set precategory_Set homset
-- yoneda_embedding nat_trans.compose functor_nat_trans_compose [reducible]
-- attribute tlift functor.compose [reducible]
theorem yoneda_lemma_natural_functor.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ cset)
(θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) :
(functor_lift.{v u} ∘fn θ) c (to_hom (yoneda_lemma c F) η) =
proof to_hom (yoneda_lemma c F') (θ ∘n η) qed :=
by reflexivity
-- theorem xx.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ set)
-- (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) :
-- proof _ qed =
-- to_hom (yoneda_lemma c F') (θ ∘n η) :=
-- by reflexivity
-- theorem yy.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ set)
-- (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) :
-- (functor_lift.{v u} ∘fn θ) c (to_hom (yoneda_lemma c F) η) =
-- proof _ qed :=
-- by reflexivity
definition fully_faithful_yoneda_embedding [instance] (C : Precategory) :
fully_faithful (ɏ : C ⇒ cset ^c Cᵒᵖ) :=
begin
intro c c',
fapply is_equiv_of_equiv_of_homotopy,
{ symmetry, transitivity _, apply @equiv_of_iso (homset _ _),
rexact yoneda_lemma c (ɏ c'), esimp [yoneda_embedding], exact !equiv_lift⁻¹ᵉ},
{ intro f, apply nat_trans_eq, intro c, apply eq_of_homotopy, intro f',
esimp [equiv.symm,equiv.trans],
esimp [yoneda_lemma,yoneda_embedding,Opposite],
rewrite [id_left,id_right]}
end
definition is_embedding_yoneda_embedding (C : Category) :
is_embedding (ɏ : C → Cᵒᵖ ⇒ cset) :=
begin
intro c c', fapply is_equiv_of_equiv_of_homotopy,
{ exact !eq_equiv_iso ⬝e !iso_equiv_F_iso_F ⬝e !eq_equiv_iso⁻¹ᵉ},
{ intro p, induction p, esimp [equiv.trans, equiv.symm, to_fun_iso], -- to_fun_iso not unfolded
esimp [to_fun_iso],
rewrite -eq_of_iso_refl,
apply ap eq_of_iso, apply iso_eq, esimp,
apply nat_trans_eq, intro c',
apply eq_of_homotopy, intro f,
rewrite [▸*, category.category.id_left], apply id_right}
2015-09-02 23:41:19 +00:00
end
definition is_representable {C : Precategory} (F : Cᵒᵖ ⇒ cset) := Σ(c : C), ɏ c ≅ F
section
set_option apply.class_instance false
definition is_prop_representable {C : Category} (F : Cᵒᵖ ⇒ cset)
: is_prop (is_representable F) :=
begin
fapply is_trunc_equiv_closed,
{ exact proof fiber.sigma_char ɏ F qed ⬝e sigma.sigma_equiv_sigma_right (λc, !eq_equiv_iso)},
{ apply function.is_prop_fiber_of_is_embedding, apply is_embedding_yoneda_embedding}
end
end
end yoneda