lean2/hott/init/path.hlean

725 lines
28 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
2014-12-12 18:17:50 +00:00
prelude
import .function .tactic
2014-12-12 04:14:53 +00:00
2014-12-12 18:17:50 +00:00
open function eq
2014-12-12 04:14:53 +00:00
/- Path equality -/
2014-12-12 04:14:53 +00:00
2014-12-12 18:17:50 +00:00
namespace eq
variables {A B C : Type} {P : A → Type} {a a' x y z t : A} {b b' : B}
2014-12-12 04:14:53 +00:00
2014-12-12 18:17:50 +00:00
--notation a = b := eq a b
notation x = y `:>`:50 A:49 := @eq A x y
definition idp [reducible] [constructor] {a : A} := refl a
definition idpath [reducible] [constructor] (a : A) := refl a
2014-12-12 04:14:53 +00:00
-- unbased path induction
definition rec' [reducible] [unfold 6] {P : Π (a b : A), (a = b) → Type}
(H : Π (a : A), P a a idp) {a b : A} (p : a = b) : P a b p :=
2014-12-12 18:17:50 +00:00
eq.rec (H a) p
2014-12-12 04:14:53 +00:00
definition rec_on' [reducible] [unfold 5] {P : Π (a b : A), (a = b) → Type}
{a b : A} (p : a = b) (H : Π (a : A), P a a idp) : P a b p :=
2014-12-12 18:17:50 +00:00
eq.rec (H a) p
2014-12-12 04:14:53 +00:00
/- Concatenation and inverse -/
2014-12-12 04:14:53 +00:00
definition concat [trans] [unfold 6] (p : x = y) (q : y = z) : x = z :=
by induction q; exact p
2014-12-12 04:14:53 +00:00
definition inverse [symm] [unfold 4] (p : x = y) : y = x :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
infix ⬝ := concat
postfix ⁻¹ := inverse
--a second notation for the inverse, which is not overloaded
postfix [parsing_only] `⁻¹ᵖ`:std.prec.max_plus := inverse
/- The 1-dimensional groupoid structure -/
2014-12-12 04:14:53 +00:00
-- The identity path is a right unit.
definition con_idp [unfold_full] (p : x = y) : p ⬝ idp = p :=
idp
2014-12-12 04:14:53 +00:00
-- The identity path is a right unit.
definition idp_con [unfold 4] (p : x = y) : idp ⬝ p = p :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- Concatenation is associative.
definition con.assoc' (p : x = y) (q : y = z) (r : z = t) :
2014-12-12 18:17:50 +00:00
p ⬝ (q ⬝ r) = (p ⬝ q) ⬝ r :=
by induction r; reflexivity
2014-12-12 04:14:53 +00:00
definition con.assoc (p : x = y) (q : y = z) (r : z = t) :
2014-12-12 18:17:50 +00:00
(p ⬝ q) ⬝ r = p ⬝ (q ⬝ r) :=
by induction r; reflexivity
2014-12-12 04:14:53 +00:00
-- The left inverse law.
definition con.right_inv [unfold 4] (p : x = y) : p ⬝ p⁻¹ = idp :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- The right inverse law.
definition con.left_inv [unfold 4] (p : x = y) : p⁻¹ ⬝ p = idp :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
/- Several auxiliary theorems about canceling inverses across associativity. These are somewhat
redundant, following from earlier theorems. -/
2014-12-12 04:14:53 +00:00
definition inv_con_cancel_left (p : x = y) (q : y = z) : p⁻¹ ⬝ (p ⬝ q) = q :=
by induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition con_inv_cancel_left (p : x = y) (q : x = z) : p ⬝ (p⁻¹ ⬝ q) = q :=
by induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition con_inv_cancel_right (p : x = y) (q : y = z) : (p ⬝ q) ⬝ q⁻¹ = p :=
by induction q; reflexivity
2014-12-12 04:14:53 +00:00
definition inv_con_cancel_right (p : x = z) (q : y = z) : (p ⬝ q⁻¹) ⬝ q = p :=
by induction q; reflexivity
2014-12-12 04:14:53 +00:00
-- Inverse distributes over concatenation
definition con_inv (p : x = y) (q : y = z) : (p ⬝ q)⁻¹ = q⁻¹ ⬝ p⁻¹ :=
by induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition inv_con_inv_left (p : y = x) (q : y = z) : (p⁻¹ ⬝ q)⁻¹ = q⁻¹ ⬝ p :=
by induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- universe metavariables
definition inv_con_inv_right (p : x = y) (q : z = y) : (p ⬝ q⁻¹)⁻¹ = q ⬝ p⁻¹ :=
by induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition inv_con_inv_inv (p : y = x) (q : z = y) : (p⁻¹ ⬝ q⁻¹)⁻¹ = q ⬝ p :=
by induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- Inverse is an involution.
definition inv_inv (p : x = y) : p⁻¹⁻¹ = p :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- auxiliary definition used by 'cases' tactic
definition elim_inv_inv {A : Type} {a b : A} {C : a = b → Type} (H₁ : a = b) (H₂ : C (H₁⁻¹⁻¹)) : C H₁ :=
eq.rec_on (inv_inv H₁) H₂
/- Theorems for moving things around in equations -/
2014-12-12 04:14:53 +00:00
definition con_eq_of_eq_inv_con {p : x = z} {q : y = z} {r : y = x} :
p = r⁻¹ ⬝ q → r ⬝ p = q :=
begin
induction r, intro h, exact !idp_con ⬝ h ⬝ !idp_con
end
2014-12-12 04:14:53 +00:00
definition con_eq_of_eq_con_inv [unfold 5] {p : x = z} {q : y = z} {r : y = x} :
2014-12-12 18:17:50 +00:00
r = q ⬝ p⁻¹ → r ⬝ p = q :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
definition inv_con_eq_of_eq_con {p : x = z} {q : y = z} {r : x = y} :
2014-12-12 18:17:50 +00:00
p = r ⬝ q → r⁻¹ ⬝ p = q :=
by induction r; intro h; exact !idp_con ⬝ h ⬝ !idp_con
2014-12-12 04:14:53 +00:00
definition con_inv_eq_of_eq_con [unfold 5] {p : z = x} {q : y = z} {r : y = x} :
2014-12-12 18:17:50 +00:00
r = q ⬝ p → r ⬝ p⁻¹ = q :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
definition eq_con_of_inv_con_eq {p : x = z} {q : y = z} {r : y = x} :
2014-12-12 18:17:50 +00:00
r⁻¹ ⬝ q = p → q = r ⬝ p :=
by induction r; intro h; exact !idp_con⁻¹ ⬝ h ⬝ !idp_con⁻¹
2014-12-12 04:14:53 +00:00
definition eq_con_of_con_inv_eq [unfold 5] {p : x = z} {q : y = z} {r : y = x} :
2014-12-12 18:17:50 +00:00
q ⬝ p⁻¹ = r → q = r ⬝ p :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
definition eq_inv_con_of_con_eq {p : x = z} {q : y = z} {r : x = y} :
2014-12-12 18:17:50 +00:00
r ⬝ q = p → q = r⁻¹ ⬝ p :=
by induction r; intro h; exact !idp_con⁻¹ ⬝ h ⬝ !idp_con⁻¹
2014-12-12 04:14:53 +00:00
definition eq_con_inv_of_con_eq [unfold 5] {p : z = x} {q : y = z} {r : y = x} :
2014-12-12 18:17:50 +00:00
q ⬝ p = r → q = r ⬝ p⁻¹ :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
definition eq_of_con_inv_eq_idp [unfold 5] {p q : x = y} : p ⬝ q⁻¹ = idp → p = q :=
by induction q; exact id
2014-12-12 04:14:53 +00:00
definition eq_of_inv_con_eq_idp {p q : x = y} : q⁻¹ ⬝ p = idp → p = q :=
by induction q; intro h; exact !idp_con⁻¹ ⬝ h
2014-12-12 04:14:53 +00:00
definition eq_inv_of_con_eq_idp' [unfold 5] {p : x = y} {q : y = x} : p ⬝ q = idp → p = q⁻¹ :=
by induction q; exact id
2014-12-12 04:14:53 +00:00
definition eq_inv_of_con_eq_idp {p : x = y} {q : y = x} : q ⬝ p = idp → p = q⁻¹ :=
by induction q; intro h; exact !idp_con⁻¹ ⬝ h
2014-12-12 04:14:53 +00:00
definition eq_of_idp_eq_inv_con {p q : x = y} : idp = p⁻¹ ⬝ q → p = q :=
by induction p; intro h; exact h ⬝ !idp_con
2014-12-12 04:14:53 +00:00
definition eq_of_idp_eq_con_inv [unfold 4] {p q : x = y} : idp = q ⬝ p⁻¹ → p = q :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
definition inv_eq_of_idp_eq_con [unfold 4] {p : x = y} {q : y = x} : idp = q ⬝ p → p⁻¹ = q :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
definition inv_eq_of_idp_eq_con' {p : x = y} {q : y = x} : idp = p ⬝ q → p⁻¹ = q :=
by induction p; intro h; exact h ⬝ !idp_con
2014-12-12 04:14:53 +00:00
definition con_inv_eq_idp [unfold 6] {p q : x = y} (r : p = q) : p ⬝ q⁻¹ = idp :=
by cases r; apply con.right_inv
definition inv_con_eq_idp [unfold 6] {p q : x = y} (r : p = q) : q⁻¹ ⬝ p = idp :=
by cases r; apply con.left_inv
definition con_eq_idp {p : x = y} {q : y = x} (r : p = q⁻¹) : p ⬝ q = idp :=
by cases q; exact r
definition idp_eq_inv_con {p q : x = y} (r : p = q) : idp = p⁻¹ ⬝ q :=
by cases r; exact !con.left_inv⁻¹
definition idp_eq_con_inv {p q : x = y} (r : p = q) : idp = q ⬝ p⁻¹ :=
by cases r; exact !con.right_inv⁻¹
definition idp_eq_con {p : x = y} {q : y = x} (r : p⁻¹ = q) : idp = q ⬝ p :=
by cases p; exact r
definition eq_idp_of_con_right {p : x = x} {q : x = y} (r : p ⬝ q = q) : p = idp :=
by cases q; exact r
definition eq_idp_of_con_left {p : x = x} {q : y = x} (r : q ⬝ p = q) : p = idp :=
by cases q; exact (idp_con p)⁻¹ ⬝ r
definition idp_eq_of_con_right {p : x = x} {q : x = y} (r : q = p ⬝ q) : idp = p :=
by cases q; exact r
definition idp_eq_of_con_left {p : x = x} {q : y = x} (r : q = q ⬝ p) : idp = p :=
by cases q; exact r ⬝ idp_con p
/- Transport -/
2014-12-12 04:14:53 +00:00
definition transport [subst] [reducible] [unfold 5] (P : A → Type) {x y : A} (p : x = y)
(u : P x) : P y :=
by induction p; exact u
2014-12-12 04:14:53 +00:00
-- This idiom makes the operation right associative.
infixr ` ▸ ` := transport _
2014-12-12 04:14:53 +00:00
definition cast [reducible] [unfold 3] {A B : Type} (p : A = B) (a : A) : B :=
p ▸ a
definition cast_def [reducible] [unfold_full] {A B : Type} (p : A = B) (a : A)
: cast p a = p ▸ a :=
idp
definition tr_rev [reducible] [unfold 6] (P : A → Type) {x y : A} (p : x = y) (u : P y) : P x :=
p⁻¹ ▸ u
definition ap [unfold 6] ⦃A B : Type⦄ (f : A → B) {x y:A} (p : x = y) : f x = f y :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
abbreviation ap01 [parsing_only] := ap
2014-12-12 04:14:53 +00:00
definition homotopy [reducible] (f g : Πx, P x) : Type :=
2014-12-12 18:17:50 +00:00
Πx : A, f x = g x
2014-12-12 04:14:53 +00:00
infix ~ := homotopy
2014-12-12 04:14:53 +00:00
protected definition homotopy.refl [refl] [reducible] [unfold_full] (f : Πx, P x) : f ~ f :=
λ x, idp
protected definition homotopy.symm [symm] [reducible] [unfold_full] {f g : Πx, P x} (H : f ~ g)
: g ~ f :=
λ x, (H x)⁻¹
protected definition homotopy.trans [trans] [reducible] [unfold_full] {f g h : Πx, P x}
(H1 : f ~ g) (H2 : g ~ h) : f ~ h :=
λ x, H1 x ⬝ H2 x
definition homotopy_of_eq {f g : Πx, P x} (H1 : f = g) : f ~ g :=
H1 ▸ homotopy.refl f
definition apd10 [unfold 5] {f g : Πx, P x} (H : f = g) : f ~ g :=
λx, by induction H; reflexivity
2014-12-12 04:14:53 +00:00
--the next theorem is useful if you want to write "apply (apd10' a)"
definition apd10' [unfold 6] {f g : Πx, P x} (a : A) (H : f = g) : f a = g a :=
by induction H; reflexivity
--apd10 is also ap evaluation
definition apd10_eq_ap_eval {f g : Πx, P x} (H : f = g) (a : A)
: apd10 H a = ap (λs : Πx, P x, s a) H :=
by induction H; reflexivity
definition ap10 [reducible] [unfold 5] {f g : A → B} (H : f = g) : f ~ g := apd10 H
2014-12-12 04:14:53 +00:00
2014-12-12 18:17:50 +00:00
definition ap11 {f g : A → B} (H : f = g) {x y : A} (p : x = y) : f x = g y :=
by induction H; exact ap f p
2014-12-12 04:14:53 +00:00
definition apd [unfold 6] (f : Πa, P a) {x y : A} (p : x = y) : p ▸ f x = f y :=
by induction p; reflexivity
definition ap011 [unfold 9] (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
by cases Ha; exact ap (f a) Hb
2014-12-12 04:14:53 +00:00
/- More theorems for moving things around in equations -/
2014-12-12 04:14:53 +00:00
definition tr_eq_of_eq_inv_tr {P : A → Type} {x y : A} {p : x = y} {u : P x} {v : P y} :
u = p⁻¹ ▸ v → p ▸ u = v :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
definition inv_tr_eq_of_eq_tr {P : A → Type} {x y : A} {p : y = x} {u : P x} {v : P y} :
u = p ▸ v → p⁻¹ ▸ u = v :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
definition eq_inv_tr_of_tr_eq {P : A → Type} {x y : A} {p : x = y} {u : P x} {v : P y} :
p ▸ u = v → u = p⁻¹ ▸ v :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
definition eq_tr_of_inv_tr_eq {P : A → Type} {x y : A} {p : y = x} {u : P x} {v : P y} :
p⁻¹ ▸ u = v → u = p ▸ v :=
by induction p; exact id
2014-12-12 04:14:53 +00:00
/- Functoriality of functions -/
2014-12-12 04:14:53 +00:00
-- Here we prove that functions behave like functors between groupoids, and that [ap] itself is
-- functorial.
-- Functions take identity paths to identity paths
definition ap_idp [unfold_full] (x : A) (f : A → B) : ap f idp = idp :> (f x = f x) := idp
2014-12-12 04:14:53 +00:00
-- Functions commute with concatenation.
definition ap_con [unfold 8] (f : A → B) {x y z : A} (p : x = y) (q : y = z) :
ap f (p ⬝ q) = ap f p ⬝ ap f q :=
by induction q; reflexivity
2014-12-12 04:14:53 +00:00
definition con_ap_con_eq_con_ap_con_ap (f : A → B) {w x y z : A} (r : f w = f x)
(p : x = y) (q : y = z) : r ⬝ ap f (p ⬝ q) = (r ⬝ ap f p) ⬝ ap f q :=
by induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition ap_con_con_eq_ap_con_ap_con (f : A → B) {w x y z : A} (p : x = y) (q : y = z)
(r : f z = f w) : ap f (p ⬝ q) ⬝ r = ap f p ⬝ (ap f q ⬝ r) :=
by induction q; induction p; apply con.assoc
2014-12-12 04:14:53 +00:00
-- Functions commute with path inverses.
definition ap_inv' [unfold 6] (f : A → B) {x y : A} (p : x = y) : (ap f p)⁻¹ = ap f p⁻¹ :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition ap_inv [unfold 6] (f : A → B) {x y : A} (p : x = y) : ap f p⁻¹ = (ap f p)⁻¹ :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- [ap] itself is functorial in the first argument.
definition ap_id [unfold 4] (p : x = y) : ap id p = p :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition ap_compose [unfold 8] (g : B → C) (f : A → B) {x y : A} (p : x = y) :
2014-12-12 18:17:50 +00:00
ap (g ∘ f) p = ap g (ap f p) :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- Sometimes we don't have the actual function [compose].
definition ap_compose' [unfold 8] (g : B → C) (f : A → B) {x y : A} (p : x = y) :
2014-12-12 18:17:50 +00:00
ap (λa, g (f a)) p = ap g (ap f p) :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- The action of constant maps.
definition ap_constant [unfold 5] (p : x = y) (z : B) : ap (λu, z) p = idp :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- Naturality of [ap].
-- see also natural_square in cubical.square
definition ap_con_eq_con_ap {f g : A → B} (p : f ~ g) {x y : A} (q : x = y) :
ap f q ⬝ p y = p x ⬝ ap g q :=
by induction q; apply idp_con
2014-12-12 04:14:53 +00:00
-- Naturality of [ap] at identity.
definition ap_con_eq_con {f : A → A} (p : Πx, f x = x) {x y : A} (q : x = y) :
ap f q ⬝ p y = p x ⬝ q :=
by induction q; apply idp_con
2014-12-12 04:14:53 +00:00
definition con_ap_eq_con {f : A → A} (p : Πx, x = f x) {x y : A} (q : x = y) :
p x ⬝ ap f q = q ⬝ p y :=
by induction q; exact !idp_con⁻¹
-- Naturality of [ap] with constant function
definition ap_con_eq {f : A → B} {b : B} (p : Πx, f x = b) {x y : A} (q : x = y) :
ap f q ⬝ p y = p x :=
by induction q; apply idp_con
2014-12-12 04:14:53 +00:00
-- Naturality with other paths hanging around.
definition con_ap_con_con_eq_con_con_ap_con {f g : A → B} (p : f ~ g) {x y : A} (q : x = y)
2014-12-12 18:17:50 +00:00
{w z : B} (r : w = f x) (s : g y = z) :
(r ⬝ ap f q) ⬝ (p y ⬝ s) = (r ⬝ p x) ⬝ (ap g q ⬝ s) :=
by induction s; induction q; reflexivity
2014-12-12 04:14:53 +00:00
definition con_ap_con_eq_con_con_ap {f g : A → B} (p : f ~ g) {x y : A} (q : x = y)
2014-12-12 18:17:50 +00:00
{w : B} (r : w = f x) :
(r ⬝ ap f q) ⬝ p y = (r ⬝ p x) ⬝ ap g q :=
by induction q; reflexivity
2014-12-12 04:14:53 +00:00
-- TODO: try this using the simplifier, and compare proofs
definition ap_con_con_eq_con_ap_con {f g : A → B} (p : f ~ g) {x y : A} (q : x = y)
2014-12-12 18:17:50 +00:00
{z : B} (s : g y = z) :
ap f q ⬝ (p y ⬝ s) = p x ⬝ (ap g q ⬝ s) :=
begin
induction s,
induction q,
apply idp_con
end
2014-12-12 04:14:53 +00:00
definition con_ap_con_con_eq_con_con_con {f : A → A} (p : f ~ id) {x y : A} (q : x = y)
2014-12-12 18:17:50 +00:00
{w z : A} (r : w = f x) (s : y = z) :
(r ⬝ ap f q) ⬝ (p y ⬝ s) = (r ⬝ p x) ⬝ (q ⬝ s) :=
by induction s; induction q; reflexivity
2014-12-12 04:14:53 +00:00
definition con_con_ap_con_eq_con_con_con {g : A → A} (p : id ~ g) {x y : A} (q : x = y)
2014-12-12 18:17:50 +00:00
{w z : A} (r : w = x) (s : g y = z) :
(r ⬝ p x) ⬝ (ap g q ⬝ s) = (r ⬝ q) ⬝ (p y ⬝ s) :=
by induction s; induction q; reflexivity
2014-12-12 04:14:53 +00:00
definition con_ap_con_eq_con_con {f : A → A} (p : f ~ id) {x y : A} (q : x = y)
2014-12-12 18:17:50 +00:00
{w : A} (r : w = f x) :
(r ⬝ ap f q) ⬝ p y = (r ⬝ p x) ⬝ q :=
by induction q; reflexivity
2014-12-12 04:14:53 +00:00
definition ap_con_con_eq_con_con {f : A → A} (p : f ~ id) {x y : A} (q : x = y)
2014-12-12 18:17:50 +00:00
{z : A} (s : y = z) :
ap f q ⬝ (p y ⬝ s) = p x ⬝ (q ⬝ s) :=
by induction s; induction q; apply idp_con
2014-12-12 04:14:53 +00:00
definition con_con_ap_eq_con_con {g : A → A} (p : id ~ g) {x y : A} (q : x = y)
2014-12-12 18:17:50 +00:00
{w : A} (r : w = x) :
(r ⬝ p x) ⬝ ap g q = (r ⬝ q) ⬝ p y :=
begin cases q, exact idp end
2014-12-12 04:14:53 +00:00
definition con_ap_con_eq_con_con' {g : A → A} (p : id ~ g) {x y : A} (q : x = y)
2014-12-12 18:17:50 +00:00
{z : A} (s : g y = z) :
p x ⬝ (ap g q ⬝ s) = q ⬝ (p y ⬝ s) :=
by induction s; induction q; exact !idp_con⁻¹
2014-12-12 04:14:53 +00:00
/- Action of [apd10] and [ap10] on paths -/
2014-12-12 04:14:53 +00:00
-- Application of paths between functions preserves the groupoid structure
definition apd10_idp (f : Πx, P x) (x : A) : apd10 (refl f) x = idp := idp
2014-12-12 04:14:53 +00:00
definition apd10_con {f f' f'' : Πx, P x} (h : f = f') (h' : f' = f'') (x : A) :
apd10 (h ⬝ h') x = apd10 h x ⬝ apd10 h' x :=
by induction h; induction h'; reflexivity
2014-12-12 04:14:53 +00:00
definition apd10_inv {f g : Πx : A, P x} (h : f = g) (x : A) :
apd10 h⁻¹ x = (apd10 h x)⁻¹ :=
by induction h; reflexivity
2014-12-12 04:14:53 +00:00
definition ap10_idp {f : A → B} (x : A) : ap10 (refl f) x = idp := idp
2014-12-12 04:14:53 +00:00
definition ap10_con {f f' f'' : A → B} (h : f = f') (h' : f' = f'') (x : A) :
ap10 (h ⬝ h') x = ap10 h x ⬝ ap10 h' x := apd10_con h h' x
2014-12-12 04:14:53 +00:00
definition ap10_inv {f g : A → B} (h : f = g) (x : A) : ap10 h⁻¹ x = (ap10 h x)⁻¹ :=
apd10_inv h x
2014-12-12 04:14:53 +00:00
-- [ap10] also behaves nicely on paths produced by [ap]
2014-12-12 18:17:50 +00:00
definition ap_ap10 (f g : A → B) (h : B → C) (p : f = g) (a : A) :
ap h (ap10 p a) = ap10 (ap (λ f', h ∘ f') p) a:=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
/- Transport and the groupoid structure of paths -/
2014-12-12 04:14:53 +00:00
definition idp_tr {P : A → Type} {x : A} (u : P x) : idp ▸ u = u := idp
2014-12-12 04:14:53 +00:00
definition con_tr [unfold 7] {P : A → Type} {x y z : A} (p : x = y) (q : y = z) (u : P x) :
p ⬝ q ▸ u = q ▸ p ▸ u :=
by induction q; reflexivity
2014-12-12 04:14:53 +00:00
definition tr_inv_tr {P : A → Type} {x y : A} (p : x = y) (z : P y) :
p ▸ p⁻¹ ▸ z = z :=
(con_tr p⁻¹ p z)⁻¹ ⬝ ap (λr, transport P r z) (con.left_inv p)
2014-12-12 04:14:53 +00:00
definition inv_tr_tr {P : A → Type} {x y : A} (p : x = y) (z : P x) :
p⁻¹ ▸ p ▸ z = z :=
(con_tr p p⁻¹ z)⁻¹ ⬝ ap (λr, transport P r z) (con.right_inv p)
2014-12-12 04:14:53 +00:00
definition con_tr_lemma {P : A → Type}
2014-12-12 18:17:50 +00:00
{x y z w : A} (p : x = y) (q : y = z) (r : z = w) (u : P x) :
ap (λe, e ▸ u) (con.assoc' p q r) ⬝ (con_tr (p ⬝ q) r u) ⬝
ap (transport P r) (con_tr p q u)
= (con_tr p (q ⬝ r) u) ⬝ (con_tr q r (p ▸ u))
:> ((p ⬝ (q ⬝ r)) ▸ u = r ▸ q ▸ p ▸ u) :=
by induction r; induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- Here is another coherence lemma for transport.
definition tr_inv_tr_lemma {P : A → Type} {x y : A} (p : x = y) (z : P x) :
tr_inv_tr p (transport P p z) = ap (transport P p) (inv_tr_tr p z) :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
/- some properties for apd -/
definition apd_idp (x : A) (f : Πx, P x) : apd f idp = idp :> (f x = f x) := idp
definition apd_con (f : Πx, P x) {x y z : A} (p : x = y) (q : y = z)
: apd f (p ⬝ q) = con_tr p q (f x) ⬝ ap (transport P q) (apd f p) ⬝ apd f q :=
by cases p; cases q; apply idp
definition apd_inv (f : Πx, P x) {x y : A} (p : x = y)
: apd f p⁻¹ = (eq_inv_tr_of_tr_eq (apd f p))⁻¹ :=
by cases p; apply idp
2014-12-12 04:14:53 +00:00
-- Dependent transport in a doubly dependent type.
definition transportD [unfold 6] {P : A → Type} (Q : Πa, P a → Type)
{a a' : A} (p : a = a') (b : P a) (z : Q a b) : Q a' (p ▸ b) :=
by induction p; exact z
-- In Coq the variables P, Q and b are explicit, but in Lean we can probably have them implicit
-- using the following notation
notation p ` ▸D `:65 x:64 := transportD _ p _ x
2014-12-12 04:14:53 +00:00
-- Transporting along higher-dimensional paths
definition transport2 [unfold 7] (P : A → Type) {x y : A} {p q : x = y} (r : p = q) (z : P x) :
p ▸ z = q ▸ z :=
ap (λp', p' ▸ z) r
2014-12-12 04:14:53 +00:00
notation p ` ▸2 `:65 x:64 := transport2 _ p _ x
2014-12-12 04:14:53 +00:00
-- An alternative definition.
definition tr2_eq_ap10 (Q : A → Type) {x y : A} {p q : x = y} (r : p = q) (z : Q x) :
2014-12-12 18:17:50 +00:00
transport2 Q r z = ap10 (ap (transport Q) r) z :=
by induction r; reflexivity
2014-12-12 04:14:53 +00:00
definition tr2_con {P : A → Type} {x y : A} {p1 p2 p3 : x = y}
2014-12-12 18:17:50 +00:00
(r1 : p1 = p2) (r2 : p2 = p3) (z : P x) :
transport2 P (r1 ⬝ r2) z = transport2 P r1 z ⬝ transport2 P r2 z :=
by induction r1; induction r2; reflexivity
2014-12-12 04:14:53 +00:00
definition tr2_inv (Q : A → Type) {x y : A} {p q : x = y} (r : p = q) (z : Q x) :
transport2 Q r⁻¹ z = (transport2 Q r z)⁻¹ :=
by induction r; reflexivity
2014-12-12 04:14:53 +00:00
definition transportD2 [unfold 7] {B C : A → Type} (D : Π(a:A), B a → C a → Type)
{x1 x2 : A} (p : x1 = x2) (y : B x1) (z : C x1) (w : D x1 y z) : D x2 (p ▸ y) (p ▸ z) :=
by induction p; exact w
2014-12-12 04:14:53 +00:00
notation p ` ▸D2 `:65 x:64 := transportD2 _ p _ _ x
2014-12-12 04:14:53 +00:00
definition ap_tr_con_tr2 (P : A → Type) {x y : A} {p q : x = y} {z w : P x} (r : p = q)
2014-12-12 18:17:50 +00:00
(s : z = w) :
ap (transport P p) s ⬝ transport2 P r w = transport2 P r z ⬝ ap (transport P q) s :=
by induction r; exact !idp_con⁻¹
definition fn_tr_eq_tr_fn {P Q : A → Type} {x y : A} (p : x = y) (f : Πx, P x → Q x) (z : P x) :
2016-03-01 04:37:03 +00:00
f y (p ▸ z) = p ▸ f x z :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
/- Transporting in particular fibrations -/
2014-12-12 04:14:53 +00:00
/-
From the Coq HoTT library:
One frequently needs lemmas showing that transport in a certain dependent type is equal to some
more explicitly defined operation, defined according to the structure of that dependent type.
For most dependent types, we prove these lemmas in the appropriate file in the types/
subdirectory. Here we consider only the most basic cases.
-/
-- Transporting in a constant fibration.
definition tr_constant (p : x = y) (z : B) : transport (λx, B) p z = z :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition tr2_constant {p q : x = y} (r : p = q) (z : B) :
tr_constant p z = transport2 (λu, B) r z ⬝ tr_constant q z :=
by induction r; exact !idp_con⁻¹
2014-12-12 04:14:53 +00:00
-- Transporting in a pulled back fibration.
definition tr_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) :
2014-12-12 18:17:50 +00:00
transport (P ∘ f) p z = transport P (ap f p) z :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition ap_precompose (f : A → B) (g g' : B → C) (p : g = g') :
ap (λh, h ∘ f) p = transport (λh : B → C, g ∘ f = h ∘ f) p idp :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition apd10_ap_precompose (f : A → B) (g g' : B → C) (p : g = g') :
apd10 (ap (λh : B → C, h ∘ f) p) = λa, apd10 p (f a) :=
by induction p; reflexivity
definition apd10_ap_precompose_dependent {C : B → Type}
(f : A → B) {g g' : Πb : B, C b} (p : g = g')
: apd10 (ap (λ(h : (Πb : B, C b))(a : A), h (f a)) p) = λa, apd10 p (f a) :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition apd10_ap_postcompose (f : B → C) (g g' : A → B) (p : g = g') :
apd10 (ap (λh : A → B, f ∘ h) p) = λa, ap f (apd10 p a) :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- A special case of [tr_compose] which seems to come up a lot.
definition tr_eq_cast_ap {P : A → Type} {x y} (p : x = y) (u : P x) : p ▸ u = cast (ap P p) u :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition tr_eq_cast_ap_fn {P : A → Type} {x y} (p : x = y) : transport P p = cast (ap P p) :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
/- The behavior of [ap] and [apd] -/
2014-12-12 04:14:53 +00:00
-- In a constant fibration, [apd] reduces to [ap], modulo [transport_const].
definition apd_eq_tr_constant_con_ap (f : A → B) (p : x = y) :
apd f p = tr_constant p (f x) ⬝ ap f p :=
by induction p; reflexivity
2014-12-12 04:14:53 +00:00
/- The 2-dimensional groupoid structure -/
2014-12-12 04:14:53 +00:00
-- Horizontal composition of 2-dimensional paths.
definition concat2 [unfold 9 10] {p p' : x = y} {q q' : y = z} (h : p = p') (h' : q = q')
: p ⬝ q = p' ⬝ q' :=
ap011 concat h h'
2014-12-12 04:14:53 +00:00
-- 2-dimensional path inversion
definition inverse2 [unfold 6] {p q : x = y} (h : p = q) : p⁻¹ = q⁻¹ :=
2016-02-13 05:12:13 +00:00
ap inverse h
2014-12-12 04:14:53 +00:00
infixl ` ◾ `:75 := concat2
postfix [parsing_only] `⁻²`:(max+10) := inverse2 --this notation is abusive, should we use it?
/- Whiskering -/
2014-12-12 04:14:53 +00:00
definition whisker_left [unfold 8] (p : x = y) {q r : y = z} (h : q = r) : p ⬝ q = p ⬝ r :=
2014-12-12 04:14:53 +00:00
idp ◾ h
definition whisker_right [unfold 7] {p q : x = y} (h : p = q) (r : y = z) : p ⬝ r = q ⬝ r :=
2014-12-12 04:14:53 +00:00
h ◾ idp
-- Unwhiskering, a.k.a. cancelling
definition cancel_left {x y z : A} (p : x = y) {q r : y = z} : (p ⬝ q = p ⬝ r) → (q = r) :=
λs, !inv_con_cancel_left⁻¹ ⬝ whisker_left p⁻¹ s ⬝ !inv_con_cancel_left
2014-12-12 04:14:53 +00:00
definition cancel_right {x y z : A} {p q : x = y} (r : y = z) : (p ⬝ r = q ⬝ r) → (p = q) :=
λs, !con_inv_cancel_right⁻¹ ⬝ whisker_right s r⁻¹ ⬝ !con_inv_cancel_right
2014-12-12 04:14:53 +00:00
-- Whiskering and identity paths.
definition whisker_right_idp {p q : x = y} (h : p = q) :
whisker_right h idp = h :=
by induction h; induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition whisker_right_idp_left [unfold_full] (p : x = y) (q : y = z) :
whisker_right idp q = idp :> (p ⬝ q = p ⬝ q) :=
idp
2014-12-12 04:14:53 +00:00
definition whisker_left_idp_right [unfold_full] (p : x = y) (q : y = z) :
whisker_left p idp = idp :> (p ⬝ q = p ⬝ q) :=
idp
2014-12-12 04:14:53 +00:00
definition whisker_left_idp {p q : x = y} (h : p = q) :
(idp_con p)⁻¹ ⬝ whisker_left idp h ⬝ idp_con q = h :=
by induction h; induction p; reflexivity
definition whisker_left_idp2 {A : Type} {a : A} (p : idp = idp :> a = a) :
whisker_left idp p = p :=
begin
refine _ ⬝ whisker_left_idp p,
exact !idp_con⁻¹
end
2014-12-12 04:14:53 +00:00
definition con2_idp [unfold_full] {p q : x = y} (h : p = q) :
h ◾ idp = whisker_right h idp :> (p ⬝ idp = q ⬝ idp) :=
idp
2014-12-12 04:14:53 +00:00
definition idp_con2 [unfold_full] {p q : x = y} (h : p = q) :
idp ◾ h = whisker_left idp h :> (idp ⬝ p = idp ⬝ q) :=
idp
2014-12-12 04:14:53 +00:00
definition inverse2_concat2 {p p' : x = y} (h : p = p')
: h⁻² ◾ h = con.left_inv p ⬝ (con.left_inv p')⁻¹ :=
by induction h; induction p; reflexivity
2014-12-12 04:14:53 +00:00
-- The interchange law for concatenation.
definition con2_con_con2 {p p' p'' : x = y} {q q' q'' : y = z}
2014-12-12 18:17:50 +00:00
(a : p = p') (b : p' = p'') (c : q = q') (d : q' = q'') :
(a ◾ c) ⬝ (b ◾ d) = (a ⬝ b) ◾ (c ⬝ d) :=
by induction d; induction c; induction b;induction a; reflexivity
definition concat2_eq_rl {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z}
(a : p = p') (b : q = q') : a ◾ b = whisker_right a q ⬝ whisker_left p' b :=
by induction b; induction a; reflexivity
definition concat2_eq_lf {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z}
(a : p = p') (b : q = q') : a ◾ b = whisker_left p b ⬝ whisker_right a q' :=
by induction b; induction a; reflexivity
2014-12-12 04:14:53 +00:00
definition whisker_right_con_whisker_left {x y z : A} {p p' : x = y} {q q' : y = z}
(a : p = p') (b : q = q') :
(whisker_right a q) ⬝ (whisker_left p' b) = (whisker_left p b) ⬝ (whisker_right a q') :=
by induction b; induction a; reflexivity
2014-12-12 04:14:53 +00:00
-- Structure corresponding to the coherence equations of a bicategory.
-- The "pentagonator": the 3-cell witnessing the associativity pentagon.
2014-12-12 18:17:50 +00:00
definition pentagon {v w x y z : A} (p : v = w) (q : w = x) (r : x = y) (s : y = z) :
whisker_left p (con.assoc' q r s)
⬝ con.assoc' p (q ⬝ r) s
⬝ whisker_right (con.assoc' p q r) s
= con.assoc' p q (r ⬝ s) ⬝ con.assoc' (p ⬝ q) r s :=
by induction s;induction r;induction q;induction p;reflexivity
2014-12-12 04:14:53 +00:00
-- The 3-cell witnessing the left unit triangle.
2014-12-12 18:17:50 +00:00
definition triangulator (p : x = y) (q : y = z) :
con.assoc' p idp q ⬝ whisker_right (con_idp p) q = whisker_left p (idp_con q) :=
by induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition eckmann_hilton {x:A} (p q : idp = idp :> x = x) : p ⬝ q = q ⬝ p :=
begin
refine (whisker_right_idp p ◾ whisker_left_idp2 q)⁻¹ ⬝ _,
refine !whisker_right_con_whisker_left ⬝ _,
refine !whisker_left_idp2 ◾ !whisker_right_idp
end
definition concat_eq_concat2 {A : Type} {a : A} (p q : idp = idp :> a = a) : p ⬝ q = p ◾ q :=
begin
refine (whisker_right_idp p ◾ whisker_left_idp2 q)⁻¹ ⬝ _,
exact !concat2_eq_rl⁻¹
end
definition inverse_eq_inverse2 {A : Type} {a : A} (p : idp = idp :> a = a) : p⁻¹ = p⁻² :=
begin
apply eq.cancel_right p,
refine !con.left_inv ⬝ _,
refine _ ⬝ !concat_eq_concat2⁻¹,
exact !inverse2_concat2⁻¹,
end
2014-12-12 04:14:53 +00:00
-- The action of functions on 2-dimensional paths
definition ap02 [unfold 8] [reducible] (f : A → B) {x y : A} {p q : x = y} (r : p = q)
: ap f p = ap f q :=
ap (ap f) r
2014-12-12 04:14:53 +00:00
definition ap02_con (f : A → B) {x y : A} {p p' p'' : x = y} (r : p = p') (r' : p' = p'') :
2014-12-12 18:17:50 +00:00
ap02 f (r ⬝ r') = ap02 f r ⬝ ap02 f r' :=
by induction r; induction r'; reflexivity
2014-12-12 04:14:53 +00:00
definition ap02_con2 (f : A → B) {x y z : A} {p p' : x = y} {q q' :y = z} (r : p = p')
2014-12-12 18:17:50 +00:00
(s : q = q') :
ap02 f (r ◾ s) = ap_con f p q
2014-12-12 04:14:53 +00:00
⬝ (ap02 f r ◾ ap02 f s)
⬝ (ap_con f p' q')⁻¹ :=
by induction r; induction s; induction q; induction p; reflexivity
2014-12-12 04:14:53 +00:00
definition apd02 [unfold 8] {p q : x = y} (f : Π x, P x) (r : p = q) :
apd f p = transport2 P r (f x) ⬝ apd f q :=
by induction r; exact !idp_con⁻¹
2014-12-12 04:14:53 +00:00
-- And now for a lemma whose statement is much longer than its proof.
definition apd02_con {P : A → Type} (f : Π x:A, P x) {x y : A}
2014-12-12 18:17:50 +00:00
{p1 p2 p3 : x = y} (r1 : p1 = p2) (r2 : p2 = p3) :
apd02 f (r1 ⬝ r2) = apd02 f r1
⬝ whisker_left (transport2 P r1 (f x)) (apd02 f r2)
⬝ con.assoc' _ _ _
⬝ (whisker_right (tr2_con r1 r2 (f x))⁻¹ (apd f p3)) :=
by induction r2; induction r1; induction p1; reflexivity
2014-12-12 18:17:50 +00:00
end eq