lean2/library/data/nat/power.lean

112 lines
4.5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
The power function on the natural numbers.
-/
import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.ring_power
namespace nat
definition nat_has_pow_nat [instance] [priority nat.prio] : has_pow_nat nat :=
2015-10-09 19:47:55 +00:00
has_pow_nat.mk has_pow_nat.pow_nat
theorem pow_le_pow_of_le {x y : } (i : ) (H : x ≤ y) : x^i ≤ y^i :=
pow_le_pow_of_le i !zero_le H
theorem eq_zero_of_pow_eq_zero {a m : } (H : a^m = 0) : a = 0 :=
or.elim (eq_zero_or_pos m)
(suppose m = 0,
by rewrite [`m = 0` at H, pow_zero at H]; contradiction)
(suppose m > 0,
have h₁ : ∀ m, a^succ m = 0 → a = 0,
begin
intro m,
induction m with m ih,
{krewrite pow_one; intros; assumption},
rewrite pow_succ,
intro H,
cases eq_zero_or_eq_zero_of_mul_eq_zero H with h₃ h₄,
assumption,
exact ih h₄
end,
obtain m' (h₂ : m = succ m'), from exists_eq_succ_of_pos `m > 0`,
show a = 0, by rewrite h₂ at H; apply h₁ m' H)
-- generalize to semirings?
theorem le_pow_self {x : } (H : x > 1) : ∀ i, i ≤ x^i
| 0 := !zero_le
| (succ j) := have x > 0, from lt.trans zero_lt_one H,
have h₁ : x^j ≥ 1, from succ_le_of_lt (pow_pos_of_pos _ this),
have x ≥ 2, from succ_le_of_lt H,
calc
succ j = j + 1 : rfl
... ≤ x^j + 1 : add_le_add_right (le_pow_self j)
... ≤ x^j + x^j : add_le_add_left h₁
... = x^j * (1 + 1) : by rewrite [left_distrib, *mul_one]
... = x^j * 2 : rfl
... ≤ x^j * x : mul_le_mul_left _ `x ≥ 2`
... = x^(succ j) : pow_succ'
-- TODO: eventually this will be subsumed under the algebraic theorems
theorem mul_self_eq_pow_2 (a : nat) : a * a = a ^ 2 :=
show a * a = a ^ (succ (succ zero)), from
by krewrite [*pow_succ, *pow_zero, mul_one]
theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → a ^ b = a ^ c → b = c
| a 0 0 h₁ h₂ := rfl
| a (succ b) 0 h₁ h₂ :=
have a = 1, by rewrite [pow_succ at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂),
have (1:nat) < 1, by rewrite [this at h₁]; exact h₁,
absurd `1 <[nat] 1` !lt.irrefl
| a 0 (succ c) h₁ h₂ :=
have a = 1, by rewrite [pow_succ at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)),
have (1:nat) < 1, by rewrite [this at h₁]; exact h₁,
absurd `1 <[nat] 1` !lt.irrefl
| a (succ b) (succ c) h₁ h₂ :=
have a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial),
have a^b = a^c, by rewrite [*pow_succ at h₂]; exact (eq_of_mul_eq_mul_left (pos_of_ne_zero this) h₂),
by rewrite [pow_cancel_left h₁ this]
theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → (a ^ succ b) / a = a ^ b
| a 0 h := by rewrite [pow_succ, pow_zero, mul_one, nat.div_self (pos_of_ne_zero h)]
| a (succ b) h := by rewrite [pow_succ, nat.mul_div_cancel_left _ (pos_of_ne_zero h)]
2015-07-03 05:27:21 +00:00
lemma dvd_pow : ∀ (i : nat) {n : nat}, n > 0 → i i^n
| i 0 h := absurd h !lt.irrefl
| i (succ n) h := by rewrite [pow_succ']; apply dvd_mul_left
2015-07-03 05:27:21 +00:00
lemma dvd_pow_of_dvd_of_pos : ∀ {i j n : nat}, i j → n > 0 → i j^n
| i j 0 h₁ h₂ := absurd h₂ !lt.irrefl
| i j (succ n) h₁ h₂ := by rewrite [pow_succ']; apply dvd_mul_of_dvd_right h₁
2015-07-03 05:27:21 +00:00
lemma pow_mod_eq_zero (i : nat) {n : nat} (h : n > 0) : (i ^ n) % i = 0 :=
2015-07-03 05:27:21 +00:00
iff.mp !dvd_iff_mod_eq_zero (dvd_pow i h)
lemma pow_dvd_of_pow_succ_dvd {p i n : nat} : p^(succ i) n → p^i n :=
suppose p^(succ i) n,
have p^i p^(succ i),
by rewrite [pow_succ']; apply nat.dvd_of_eq_mul; apply rfl,
dvd.trans `p^i p^(succ i)` `p^(succ i) n`
lemma dvd_of_pow_succ_dvd_mul_pow {p i n : nat} (Ppos : p > 0) :
p^(succ i) (n * p^i) → p n :=
by rewrite [pow_succ]; apply nat.dvd_of_mul_dvd_mul_right; apply pow_pos_of_pos _ Ppos
lemma coprime_pow_right {a b} : ∀ n, coprime b a → coprime b (a^n)
| 0 h := !comprime_one_right
| (succ n) h :=
begin
rewrite [pow_succ'],
apply coprime_mul_right,
exact coprime_pow_right n h,
exact h
end
lemma coprime_pow_left {a b} : ∀ n, coprime b a → coprime (b^n) a :=
take n, suppose coprime b a,
coprime_swap (coprime_pow_right n (coprime_swap this))
end nat