lean2/library/algebra/group_bigops.lean

343 lines
12 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
Finite products on a monoid, and finite sums on an additive monoid. There are three versions:
Prodl, Suml : products and sums over lists
Prod, Sum (in namespace finset) : products and sums over finsets
Prod, Sum (in namespace set) : products and sums over finite sets
We have to be careful with dependencies. This theory imports files from finset and list, which
import basic files from nat.
-/
import .group .group_power data.list.basic data.list.perm data.finset.basic data.set.finite
open function binary quot subtype list finset
variables {A B : Type}
variable [deceqA : decidable_eq A]
/-
-- list versions.
-/
/- Prodl: product indexed by a list -/
section monoid
variable [mB : monoid B]
include mB
definition mulf (f : A → B) : B → A → B :=
λ b a, b * f a
definition Prodl (l : list A) (f : A → B) : B :=
list.foldl (mulf f) 1 l
-- ∏ x ← l, f x
notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r
private theorem foldl_const (f : A → B) :
∀ (l : list A) (b : B), foldl (mulf f) b l = b * foldl (mulf f) 1 l
| [] b := by rewrite [*foldl_nil, mul_one]
| (a::l) b := by rewrite [*foldl_cons, foldl_const, {foldl _ (mulf f 1 a) _}foldl_const, ↑mulf,
one_mul, mul.assoc]
theorem Prodl_nil (f : A → B) : Prodl [] f = 1 := rfl
theorem Prodl_cons (f : A → B) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f :=
by rewrite [↑Prodl, foldl_cons, foldl_const, ↑mulf, one_mul]
theorem Prodl_append :
∀ (l₁ l₂ : list A) (f : A → B), Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f
| [] l₂ f := by rewrite [append_nil_left, Prodl_nil, one_mul]
| (a::l) l₂ f := by rewrite [append_cons, *Prodl_cons, Prodl_append, mul.assoc]
section deceqA
include deceqA
theorem Prodl_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l →
Prodl (insert a l) f = Prodl l f :=
assume ainl, by rewrite [insert_eq_of_mem ainl]
theorem Prodl_insert_of_not_mem (f : A → B) {a : A} {l : list A} :
a ∉ l → Prodl (insert a l) f = f a * Prodl l f :=
assume nainl, by rewrite [insert_eq_of_not_mem nainl, Prodl_cons]
theorem Prodl_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f :=
by rewrite [union_eq_append d, Prodl_append]
end deceqA
theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = (1:B)
| [] := rfl
| (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one]
lemma Prodl_singleton {a : A} {f : A → B} : Prodl [a] f = f a :=
!one_mul
lemma Prodl_map {f : A → B} :
∀ {l : list A}, Prodl l f = Prodl (map f l) id
| nil := by rewrite [map_nil]
| (a::l) := begin rewrite [map_cons, Prodl_cons f, Prodl_cons id (f a), Prodl_map] end
open nat
lemma Prodl_eq_pow_of_const {f : A → B} :
∀ {l : list A} b, (∀ a, a ∈ l → f a = b) → Prodl l f = b ^ length l
| nil := take b, assume Pconst, by rewrite [length_nil, {b^0}pow_zero]
| (a::l) := take b, assume Pconst,
assert Pconstl : ∀ a', a' ∈ l → f a' = b,
from take a' Pa'in, Pconst a' (mem_cons_of_mem a Pa'in),
by rewrite [Prodl_cons f, Pconst a !mem_cons, Prodl_eq_pow_of_const b Pconstl, length_cons, add_one, pow_succ b]
end monoid
section comm_monoid
variable [cmB : comm_monoid B]
include cmB
theorem Prodl_mul (l : list A) (f g : A → B) : Prodl l (λx, f x * g x) = Prodl l f * Prodl l g :=
list.induction_on l
(by rewrite [*Prodl_nil, mul_one])
(take a l,
assume IH,
by rewrite [*Prodl_cons, IH, *mul.assoc, mul.left_comm (Prodl l f)])
end comm_monoid
/- Suml: sum indexed by a list -/
section add_monoid
variable [amB : add_monoid B]
include amB
local attribute add_monoid.to_monoid [trans_instance]
definition Suml (l : list A) (f : A → B) : B := Prodl l f
-- ∑ x ← l, f x
notation `∑` binders `←` l, r:(scoped f, Suml l f) := r
theorem Suml_nil (f : A → B) : Suml [] f = 0 := Prodl_nil f
theorem Suml_cons (f : A → B) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f :=
Prodl_cons f a l
theorem Suml_append (l₁ l₂ : list A) (f : A → B) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f :=
Prodl_append l₁ l₂ f
section deceqA
include deceqA
theorem Suml_insert_of_mem (f : A → B) {a : A} {l : list A} (H : a ∈ l) :
Suml (insert a l) f = Suml l f := Prodl_insert_of_mem f H
theorem Suml_insert_of_not_mem (f : A → B) {a : A} {l : list A} (H : a ∉ l) :
Suml (insert a l) f = f a + Suml l f := Prodl_insert_of_not_mem f H
theorem Suml_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := Prodl_union f d
end deceqA
theorem Suml_zero (l : list A) : Suml l (λ x, 0) = (0:B) := Prodl_one l
end add_monoid
section add_comm_monoid
variable [acmB : add_comm_monoid B]
include acmB
local attribute add_comm_monoid.to_comm_monoid [trans_instance]
theorem Suml_add (l : list A) (f g : A → B) : Suml l (λx, f x + g x) = Suml l f + Suml l g :=
Prodl_mul l f g
end add_comm_monoid
/-
-- finset versions
-/
/- Prod: product indexed by a finset -/
namespace finset
variable [cmB : comm_monoid B]
include cmB
theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) :=
right_commutative_compose_right (@has_mul.mul B _) f (@mul.right_comm B _)
theorem Prodl_eq_Prodl_of_perm (f : A → B) {l₁ l₂ : list A} :
perm l₁ l₂ → Prodl l₁ f = Prodl l₂ f :=
λ p, perm.foldl_eq_of_perm (mulf_rcomm f) p 1
definition Prod (s : finset A) (f : A → B) : B :=
quot.lift_on s
(λ l, Prodl (elt_of l) f)
(λ l₁ l₂ p, Prodl_eq_Prodl_of_perm f p)
-- ∏ x ∈ s, f x
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → B) : Prod ∅ f = 1 :=
Prodl_nil f
theorem Prod_mul (s : finset A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
quot.induction_on s (take u, !Prodl_mul)
section deceqA
include deceqA
theorem Prod_insert_of_mem (f : A → B) {a : A} {s : finset A} :
a ∈ s → Prod (insert a s) f = Prod s f :=
quot.induction_on s
(λ l ainl, Prodl_insert_of_mem f ainl)
theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : finset A} :
a ∉ s → Prod (insert a s) f = f a * Prod s f :=
quot.induction_on s
(λ l nainl, Prodl_insert_of_not_mem f nainl)
theorem Prod_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f :=
have H1 : disjoint s₁ s₂ → Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f, from
quot.induction_on₂ s₁ s₂
(λ l₁ l₂ d, Prodl_union f d),
H1 (disjoint_of_inter_eq_empty disj)
theorem Prod_ext {s : finset A} {f g : A → B} :
(∀{x}, x ∈ s → f x = g x) → Prod s f = Prod s g :=
finset.induction_on s
(assume H, rfl)
(take x s', assume H1 : x ∉ s',
assume IH : (∀ {x : A}, x ∈ s' → f x = g x) → Prod s' f = Prod s' g,
assume H2 : ∀{y}, y ∈ insert x s' → f y = g y,
assert H3 : ∀y, y ∈ s' → f y = g y, from
take y, assume H', H2 (mem_insert_of_mem _ H'),
assert H4 : f x = g x, from H2 !mem_insert,
by rewrite [Prod_insert_of_not_mem f H1, Prod_insert_of_not_mem g H1, IH H3, H4])
end deceqA
theorem Prod_one (s : finset A) : Prod s (λ x, 1) = (1:B) :=
quot.induction_on s (take u, !Prodl_one)
end finset
/- Sum: sum indexed by a finset -/
namespace finset
variable [acmB : add_comm_monoid B]
include acmB
local attribute add_comm_monoid.to_comm_monoid [trans_instance]
definition Sum (s : finset A) (f : A → B) : B := Prod s f
-- ∑ x ∈ s, f x
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f
theorem Sum_add (s : finset A) (f g : A → B) :
Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g
section deceqA
include deceqA
theorem Sum_insert_of_mem (f : A → B) {a : A} {s : finset A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : finset A} (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H
theorem Sum_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj
theorem Sum_ext {s : finset A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := Prod_ext H
end deceqA
theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = (0:B) := Prod_one s
end finset
/-
-- set versions
-/
namespace set
open classical
/- Prod: product indexed by a set -/
section Prod
variable [cmB : comm_monoid B]
include cmB
noncomputable definition Prod (s : set A) (f : A → B) : B := finset.Prod (to_finset s) f
-- ∏ x ∈ s, f x
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → B) : Prod ∅ f = 1 :=
by rewrite [↑Prod, to_finset_empty]
theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Prod s f = 1 :=
by rewrite [↑Prod, to_finset_of_not_finite nfins]
theorem Prod_mul (s : set A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
by rewrite [↑Prod, finset.Prod_mul]
theorem Prod_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) :
Prod (insert a s) f = Prod s f :=
by_cases
(suppose finite s,
assert (#finset a ∈ set.to_finset s), by rewrite mem_to_finset_eq; apply H,
by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_mem f this])
(assume nfs : ¬ finite s,
assert ¬ finite (insert a s), from assume H, nfs (finite_of_finite_insert H),
by rewrite [Prod_of_not_finite nfs, Prod_of_not_finite this])
theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) :
Prod (insert a s) f = f a * Prod s f :=
assert (#finset a ∉ set.to_finset s), by rewrite mem_to_finset_eq; apply H,
by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_not_mem f this]
theorem Prod_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f :=
begin
rewrite [↑Prod, to_finset_union],
apply finset.Prod_union,
apply finset.eq_of_to_set_eq_to_set,
rewrite [finset.to_set_inter, *to_set_to_finset, finset.to_set_empty, disj]
end
theorem Prod_ext {s : set A} {f g : A → B} (H : ∀{x}, x ∈ s → f x = g x) : Prod s f = Prod s g :=
by_cases
(suppose finite s,
by esimp [Prod]; apply finset.Prod_ext; intro x; rewrite [mem_to_finset_eq]; apply H)
(assume nfs : ¬ finite s,
by rewrite [*Prod_of_not_finite nfs])
theorem Prod_one (s : set A) : Prod s (λ x, 1) = (1:B) :=
by rewrite [↑Prod, finset.Prod_one]
end Prod
/- Sum: sum indexed by a set -/
section Sum
variable [acmB : add_comm_monoid B]
include acmB
local attribute add_comm_monoid.to_comm_monoid [trans_instance]
noncomputable definition Sum (s : set A) (f : A → B) : B := Prod s f
proposition Sum_def (s : set A) (f : A → B) : Sum s f = finset.Sum (to_finset s) f := rfl
-- ∑ x ∈ s, f x
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f
theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Sum s f = 0 :=
Prod_of_not_finite nfins f
theorem Sum_add (s : set A) (f g : A → B) :
Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g
theorem Sum_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H
theorem Sum_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj
theorem Sum_ext {s : set A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := Prod_ext H
theorem Sum_zero (s : set A) : Sum s (λ x, 0) = (0:B) := Prod_one s
end Sum
end set