lean2/hott/algebra/category/limits/set.hlean

107 lines
4.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jakob von Raumer
The category of sets is complete and cocomplete
-/
import .colimits ..constructions.set hit.set_quotient
open eq functor is_trunc sigma pi sigma.ops trunc set_quotient
namespace category
local attribute Category.to.precategory [unfold 1]
local attribute category.to_precategory [unfold 2]
definition is_complete_set_cone.{u v w} [constructor]
(I : Precategory.{v w}) (F : I ⇒ set.{max u v w}) : cone_obj F :=
begin
fapply cone_obj.mk,
{ fapply trunctype.mk,
{ exact Σ(s : Π(i : I), trunctype.carrier (F i)),
Π{i j : I} (f : i ⟶ j), F f (s i) = (s j)},
{ with_options [elaborator.ignore_instances true] -- TODO: fix
( refine is_trunc_sigma _ _;
( apply is_trunc_pi);
( intro s;
refine is_trunc_pi _ _; intro i;
refine is_trunc_pi _ _; intro j;
refine is_trunc_pi _ _; intro f;
apply is_trunc_eq))}},
{ fapply nat_trans.mk,
{ intro i x, esimp at x, exact x.1 i},
{ intro i j f, esimp, apply eq_of_homotopy, intro x, esimp at x, induction x with s p,
esimp, apply p}}
end
definition is_complete_set.{u v w} [instance] : is_complete.{(max u v w)+1 (max u v w) v w} set :=
begin
intro I F, fapply has_terminal_object.mk,
{ exact is_complete_set_cone.{u v w} I F},
{ intro c, esimp at *, induction c with X η, induction η with η p, esimp at *,
fapply is_contr.mk,
{ fapply cone_hom.mk,
{ intro x, esimp at *, fapply sigma.mk,
{ intro i, exact η i x},
{ intro i j f, exact ap10 (p f) x}},
{ intro i, reflexivity}},
{ esimp, intro h, induction h with f q, apply cone_hom_eq, esimp at *,
apply eq_of_homotopy, intro x, fapply sigma_eq: esimp,
{ apply eq_of_homotopy, intro i, exact (ap10 (q i) x)⁻¹},
{ with_options [elaborator.ignore_instances true] -- TODO: fix
( refine is_hprop.elimo _ _ _;
refine is_trunc_pi _ _; intro i;
refine is_trunc_pi _ _; intro j;
refine is_trunc_pi _ _; intro f;
apply is_trunc_eq)}}}
end
definition is_cocomplete_set_cone_rel.{u v w} [unfold 3 4]
(I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : (Σ(i : I), trunctype.carrier (F i)) →
(Σ(i : I), trunctype.carrier (F i)) → hprop.{max u v w} :=
begin
intro v w, induction v with i x, induction w with j y,
fapply trunctype.mk,
{ exact ∃(f : i ⟶ j), to_fun_hom F f y = x},
{ exact _}
end
definition is_cocomplete_set_cone.{u v w} [constructor]
(I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : cone_obj F :=
begin
fapply cone_obj.mk,
{ fapply trunctype.mk,
{ apply set_quotient (is_cocomplete_set_cone_rel.{u v w} I F)},
{ apply is_hset_set_quotient}},
{ fapply nat_trans.mk,
{ intro i x, esimp, apply class_of, exact ⟨i, x⟩},
{ intro i j f, esimp, apply eq_of_homotopy, intro y, apply eq_of_rel, esimp,
exact exists.intro f idp}}
end
-- TODO: change this after induction tactic for trunc/set_quotient is implemented
definition is_cocomplete_set.{u v w} [instance]
: is_cocomplete.{(max u v w)+1 (max u v w) v w} set :=
begin
intro I F, fapply has_terminal_object.mk,
{ exact is_cocomplete_set_cone.{u v w} I F},
{ intro c, esimp at *, induction c with X η, induction η with η p, esimp at *,
fapply is_contr.mk,
{ fapply cone_hom.mk,
{ refine set_quotient.elim _ _,
{ intro v, induction v with i x, exact η i x},
{ intro v w r, induction v with i x, induction w with j y, esimp at *,
refine trunc.elim_on r _, clear r,
intro u, induction u with f q,
exact ap (η i) q⁻¹ ⬝ ap10 (p f) y}},
{ intro i, reflexivity}},
{ esimp, intro h, induction h with f q, apply cone_hom_eq, esimp at *,
apply eq_of_homotopy, refine set_quotient.rec _ _,
{ intro v, induction v with i x, esimp, exact (ap10 (q i) x)⁻¹},
{ intro v w r, apply is_hprop.elimo}}},
end
end category