lean2/src/builtin/Nat.lean

212 lines
9.9 KiB
Text
Raw Normal View History

Import kernel.
Import macros.
Variable Nat : Type.
Alias : Nat.
Namespace Nat.
Builtin numeral.
Builtin add : Nat → Nat → Nat.
Infixl 65 + : add.
Builtin mul : Nat → Nat → Nat.
Infixl 70 * : mul.
Builtin le : Nat → Nat → Bool.
Infix 50 <= : le.
Infix 50 ≤ : le.
Definition ge (a b : Nat) := b ≤ a.
Infix 50 >= : ge.
Infix 50 ≥ : ge.
Definition lt (a b : Nat) := ¬ (a ≥ b).
Infix 50 < : lt.
Definition gt (a b : Nat) := ¬ (a ≤ b).
Infix 50 > : gt.
Definition id (a : Nat) := a.
Notation 55 | _ | : id.
Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b
Axiom PlusZero (a : Nat) : a + 0 = a.
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
Axiom MulZero (a : Nat) : a * 0 = 0.
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
Axiom LeDef (a b : Nat) : a ≤ b ⇔ ∃ c : Nat, a + c = b.
Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
Theorem ZeroPlus (a : Nat) : 0 + a = a
:= Induction (show 0 + 0 = 0, Trivial)
(λ (n : Nat) (iH : 0 + n = n),
calc 0 + (n + 1) = (0 + n) + 1 : PlusSucc 0 n
... = n + 1 : { iH })
a.
Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1
:= Induction (calc (a + 1) + 0 = a + 1 : PlusZero (a + 1)
... = (a + 0) + 1 : { Symm (PlusZero a) })
(λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1),
calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : PlusSucc (a + 1) n
... = ((a + n) + 1) + 1 : { iH }
... = (a + (n + 1)) + 1 : { show (a + n) + 1 = a + (n + 1), Symm (PlusSucc a n) })
b.
Theorem PlusComm (a b : Nat) : a + b = b + a
:= Induction (calc a + 0 = a : PlusZero a
... = 0 + a : Symm (ZeroPlus a))
(λ (n : Nat) (iH : a + n = n + a),
calc a + (n + 1) = (a + n) + 1 : PlusSucc a n
... = (n + a) + 1 : { iH }
... = (n + 1) + a : Symm (SuccPlus n a))
b.
Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c
:= Induction (calc 0 + (b + c) = b + c : ZeroPlus (b + c)
... = (0 + b) + c : { Symm (ZeroPlus b) })
(λ (n : Nat) (iH : n + (b + c) = (n + b) + c),
calc (n + 1) + (b + c) = (n + (b + c)) + 1 : SuccPlus n (b + c)
... = ((n + b) + c) + 1 : { iH }
... = ((n + b) + 1) + c : Symm (SuccPlus (n + b) c)
... = ((n + 1) + b) + c : { show (n + b) + 1 = (n + 1) + b, Symm (SuccPlus n b) })
a.
Theorem ZeroMul (a : Nat) : 0 * a = 0
:= Induction (show 0 * 0 = 0, Trivial)
(λ (n : Nat) (iH : 0 * n = 0),
calc 0 * (n + 1) = (0 * n) + 0 : MulSucc 0 n
... = 0 + 0 : { iH }
... = 0 : Trivial)
a.
Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b
:= Induction (calc (a + 1) * 0 = 0 : MulZero (a + 1)
... = a * 0 : Symm (MulZero a)
... = a * 0 + 0 : Symm (PlusZero (a * 0)))
(λ (n : Nat) (iH : (a + 1) * n = a * n + n),
calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : MulSucc (a + 1) n
... = a * n + n + (a + 1) : { iH }
... = a * n + n + a + 1 : PlusAssoc (a * n + n) a 1
... = a * n + (n + a) + 1 : { show a * n + n + a = a * n + (n + a), Symm (PlusAssoc (a * n) n a) }
... = a * n + (a + n) + 1 : { PlusComm n a }
... = a * n + a + n + 1 : { PlusAssoc (a * n) a n }
... = a * (n + 1) + n + 1 : { Symm (MulSucc a n) }
... = a * (n + 1) + (n + 1) : Symm (PlusAssoc (a * (n + 1)) n 1))
b.
Theorem OneMul (a : Nat) : 1 * a = a
:= Induction (show 1 * 0 = 0, Trivial)
(λ (n : Nat) (iH : 1 * n = n),
calc 1 * (n + 1) = 1 * n + 1 : MulSucc 1 n
... = n + 1 : { iH })
a.
Theorem MulOne (a : Nat) : a * 1 = a
:= Induction (show 0 * 1 = 0, Trivial)
(λ (n : Nat) (iH : n * 1 = n),
calc (n + 1) * 1 = n * 1 + 1 : SuccMul n 1
... = n + 1 : { iH })
a.
Theorem MulComm (a b : Nat) : a * b = b * a
:= Induction (calc a * 0 = 0 : MulZero a
... = 0 * a : Symm (ZeroMul a))
(λ (n : Nat) (iH : a * n = n * a),
calc a * (n + 1) = a * n + a : MulSucc a n
... = n * a + a : { iH }
... = (n + 1) * a : Symm (SuccMul n a))
b.
Theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c
:= Induction (calc 0 * (b + c) = 0 : ZeroMul (b + c)
... = 0 + 0 : Trivial
... = 0 * b + 0 : { Symm (ZeroMul b) }
... = 0 * b + 0 * c : { Symm (ZeroMul c) })
(λ (n : Nat) (iH : n * (b + c) = n * b + n * c),
calc (n + 1) * (b + c) = n * (b + c) + (b + c) : SuccMul n (b + c)
... = n * b + n * c + (b + c) : { iH }
... = n * b + n * c + b + c : PlusAssoc (n * b + n * c) b c
... = n * b + (n * c + b) + c : { Symm (PlusAssoc (n * b) (n * c) b) }
... = n * b + (b + n * c) + c : { PlusComm (n * c) b }
... = n * b + b + n * c + c : { PlusAssoc (n * b) b (n * c) }
... = (n + 1) * b + n * c + c : { Symm (SuccMul n b) }
... = (n + 1) * b + (n * c + c) : Symm (PlusAssoc ((n + 1) * b) (n * c) c)
... = (n + 1) * b + (n + 1) * c : { Symm (SuccMul n c) })
a.
Theorem Distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c
:= calc (a + b) * c = c * (a + b) : MulComm (a + b) c
... = c * a + c * b : Distribute c a b
... = a * c + c * b : { MulComm c a }
... = a * c + b * c : { MulComm c b }.
Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c
:= Induction (calc 0 * (b * c) = 0 : ZeroMul (b * c)
... = 0 * c : Symm (ZeroMul c)
... = (0 * b) * c : { Symm (ZeroMul b) })
(λ (n : Nat) (iH : n * (b * c) = n * b * c),
calc (n + 1) * (b * c) = n * (b * c) + (b * c) : SuccMul n (b * c)
... = n * b * c + (b * c) : { iH }
... = (n * b + b) * c : Symm (Distribute2 (n * b) b c)
... = (n + 1) * b * c : { Symm (SuccMul n b) })
a.
Theorem PlusInj' (a b c : Nat) : a + b = a + c ⇒ b = c
:= Induction (assume H : 0 + b = 0 + c,
calc b = 0 + b : Symm (ZeroPlus b)
... = 0 + c : H
... = c : ZeroPlus c)
(λ (n : Nat) (iH : n + b = n + c ⇒ b = c),
assume H : n + 1 + b = n + 1 + c,
let L1 : n + b + 1 = n + c + 1
:= (calc n + b + 1 = n + (b + 1) : Symm (PlusAssoc n b 1)
... = n + (1 + b) : { PlusComm b 1 }
... = n + 1 + b : PlusAssoc n 1 b
... = n + 1 + c : H
... = n + (1 + c) : Symm (PlusAssoc n 1 c)
... = n + (c + 1) : { PlusComm 1 c }
... = n + c + 1 : PlusAssoc n c 1),
L2 : n + b = n + c := SuccInj L1
in MP iH L2)
a.
Theorem PlusInj {a b c : Nat} (H : a + b = a + c) : b = c
:= MP (PlusInj' a b c) H.
Theorem LeIntro {a b c : Nat} (H : a + c = b) : a ≤ b
:= EqMP (Symm (LeDef a b)) (show (∃ x, a + x = b), ExistsIntro c H).
Theorem LeElim {a b : Nat} (H : a ≤ b) : ∃ x, a + x = b
:= EqMP (LeDef a b) H.
Theorem LeRefl (a : Nat) : a ≤ a := LeIntro (PlusZero a).
Theorem LeZero (a : Nat) : 0 ≤ a := LeIntro (ZeroPlus a).
Theorem LeTrans {a b c : Nat} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c
:= ExistsElim (LeElim H1)
(λ (w1 : Nat) (Hw1 : a + w1 = b),
ExistsElim (LeElim H2)
(λ (w2 : Nat) (Hw2 : b + w2 = c),
LeIntro (calc a + (w1 + w2) = a + w1 + w2 : PlusAssoc a w1 w2
... = b + w2 : { Hw1 }
... = c : Hw2))).
Theorem LeInj {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c
:= ExistsElim (LeElim H)
(λ (w : Nat) (Hw : a + w = b),
LeIntro (calc a + c + w = a + (c + w) : Symm (PlusAssoc a c w)
... = a + (w + c) : { PlusComm c w }
... = a + w + c : PlusAssoc a w c
... = b + c : { Hw })).
SetOpaque ge true.
SetOpaque lt true.
SetOpaque gt true.
SetOpaque id true.
EndNamespace.