lean2/library/algebra/complete_lattice.lean

362 lines
13 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Complete lattices
TODO: define dual complete lattice and simplify proof of dual theorems.
-/
import algebra.lattice data.set.basic
open set
variable {A : Type}
structure complete_lattice [class] (A : Type) extends lattice A :=
(Inf : set A → A)
(Sup : set A → A)
(Inf_le : ∀ {a : A} {s : set A}, a ∈ s → le (Inf s) a)
(le_Inf : ∀ {b : A} {s : set A}, (∀ (a : A), a ∈ s → le b a) → le b (Inf s))
(le_Sup : ∀ {a : A} {s : set A}, a ∈ s → le a (Sup s))
(Sup_le : ∀ {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → le a b), le (Sup s) b)
-- Minimal complete_lattice definition based just on Inf.
-- We later show that complete_lattice_Inf is a complete_lattice.
structure complete_lattice_Inf [class] (A : Type) extends weak_order A :=
(Inf : set A → A)
(Inf_le : ∀ {a : A} {s : set A}, a ∈ s → le (Inf s) a)
(le_Inf : ∀ {b : A} {s : set A}, (∀ (a : A), a ∈ s → le b a) → le b (Inf s))
-- Minimal complete_lattice definition based just on Sup.
-- We later show that complete_lattice_Sup is a complete_lattice.
structure complete_lattice_Sup [class] (A : Type) extends weak_order A :=
(Sup : set A → A)
(le_Sup : ∀ {a : A} {s : set A}, a ∈ s → le a (Sup s))
(Sup_le : ∀ {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → le a b), le (Sup s) b)
namespace complete_lattice_Inf
variable [C : complete_lattice_Inf A]
include C
definition Sup (s : set A) : A :=
Inf {b | ∀ a, a ∈ s → a ≤ b}
local prefix `⨅`:70 := Inf
local prefix `⨆`:65 := Sup
lemma le_Sup {a : A} {s : set A} : a ∈ s → a ≤ ⨆ s :=
suppose a ∈ s, le_Inf
(show ∀ (b : A), (∀ (a : A), a ∈ s → a ≤ b) → a ≤ b, from
take b, assume h, h a `a ∈ s`)
lemma Sup_le {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → a ≤ b) : ⨆ s ≤ b :=
Inf_le h
definition inf (a b : A) := ⨅ '{a, b}
definition sup (a b : A) := ⨆ '{a, b}
local infix `⊓` := inf
local infix `⊔` := sup
lemma inf_le_left (a b : A) : a ⊓ b ≤ a :=
Inf_le !mem_insert
lemma inf_le_right (a b : A) : a ⊓ b ≤ b :=
Inf_le (!mem_insert_of_mem !mem_insert)
lemma le_inf {a b c : A} : c ≤ a → c ≤ b → c ≤ a ⊓ b :=
assume h₁ h₂,
le_Inf (take x, suppose x ∈ '{a, b},
or.elim (eq_or_mem_of_mem_insert this)
(suppose x = a, begin subst x, exact h₁ end)
(suppose x ∈ '{b},
assert x = b, from !eq_of_mem_singleton this,
begin subst x, exact h₂ end))
lemma le_sup_left (a b : A) : a ≤ a ⊔ b :=
le_Sup !mem_insert
lemma le_sup_right (a b : A) : b ≤ a ⊔ b :=
le_Sup (!mem_insert_of_mem !mem_insert)
lemma sup_le {a b c : A} : a ≤ c → b ≤ c → a ⊔ b ≤ c :=
assume h₁ h₂,
Sup_le (take x, suppose x ∈ '{a, b},
or.elim (eq_or_mem_of_mem_insert this)
(suppose x = a, by subst x; assumption)
(suppose x ∈ '{b},
assert x = b, from !eq_of_mem_singleton this,
by subst x; assumption))
end complete_lattice_Inf
-- Every complete_lattice_Inf is a complete_lattice_Sup
definition complete_lattice_Inf_to_complete_lattice_Sup [C : complete_lattice_Inf A] : complete_lattice_Sup A :=
⦃ complete_lattice_Sup, C ⦄
-- Every complete_lattice_Inf is a complete_lattice
definition complete_lattice_Inf_to_complete_lattice [instance] [C : complete_lattice_Inf A] : complete_lattice A :=
⦃ complete_lattice, C ⦄
namespace complete_lattice_Sup
variable [C : complete_lattice_Sup A]
include C
definition Inf (s : set A) : A :=
Sup {b | ∀ a, a ∈ s → b ≤ a}
lemma Inf_le {a : A} {s : set A} : a ∈ s → Inf s ≤ a :=
suppose a ∈ s, Sup_le
(show ∀ (b : A), (∀ (a : A), a ∈ s → b ≤ a) → b ≤ a, from
take b, assume h, h a `a ∈ s`)
lemma le_Inf {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → b ≤ a) : b ≤ Inf s :=
le_Sup h
end complete_lattice_Sup
-- Every complete_lattice_Sup is a complete_lattice_Inf
definition complete_lattice_Sup_to_complete_lattice_Inf [C : complete_lattice_Sup A] : complete_lattice_Inf A :=
⦃ complete_lattice_Inf, C ⦄
-- Every complete_lattice_Sup is a complete_lattice
section
local attribute complete_lattice_Sup_to_complete_lattice_Inf [instance]
definition complete_lattice_Sup_to_complete_lattice [instance] [C : complete_lattice_Sup A] : complete_lattice A :=
_
end
namespace complete_lattice
variable [C : complete_lattice A]
include C
prefix `⨅`:70 := Inf
prefix `⨆`:65 := Sup
2015-09-30 15:06:31 +00:00
infix ` ⊓ ` := inf
infix ` ⊔ ` := sup
variable {f : A → A}
premise (mono : ∀ x y : A, x ≤ y → f x ≤ f y)
theorem knaster_tarski : ∃ a, f a = a ∧ ∀ b, f b = b → a ≤ b :=
let a := ⨅ {u | f u ≤ u} in
have h₁ : f a = a, from
have ge : f a ≤ a, from
have ∀ b, b ∈ {u | f u ≤ u} → f a ≤ b, from
take b, suppose f b ≤ b,
have a ≤ b, from Inf_le this,
have f a ≤ f b, from !mono this,
le.trans `f a ≤ f b` `f b ≤ b`,
le_Inf this,
have le : a ≤ f a, from
have f (f a) ≤ f a, from !mono ge,
have f a ∈ {u | f u ≤ u}, from this,
Inf_le this,
le.antisymm ge le,
have h₂ : ∀ b, f b = b → a ≤ b, from
take b,
suppose f b = b,
have b ∈ {u | f u ≤ u}, from
show f b ≤ b, by rewrite this; apply le.refl,
Inf_le this,
exists.intro a (and.intro h₁ h₂)
theorem knaster_tarski_dual : ∃ a, f a = a ∧ ∀ b, f b = b → b ≤ a :=
let a := ⨆ {u | u ≤ f u} in
have h₁ : f a = a, from
have le : a ≤ f a, from
have ∀ b, b ∈ {u | u ≤ f u} → b ≤ f a, from
take b, suppose b ≤ f b,
have b ≤ a, from le_Sup this,
have f b ≤ f a, from !mono this,
le.trans `b ≤ f b` `f b ≤ f a`,
Sup_le this,
have ge : f a ≤ a, from
have f a ≤ f (f a), from !mono le,
have f a ∈ {u | u ≤ f u}, from this,
le_Sup this,
le.antisymm ge le,
have h₂ : ∀ b, f b = b → b ≤ a, from
take b,
suppose f b = b,
have b ≤ f b, by rewrite this; apply le.refl,
le_Sup this,
exists.intro a (and.intro h₁ h₂)
definition bot : A := ⨅ univ
definition top : A := ⨆ univ
notation `⊥` := bot
notation `` := top
lemma bot_le (a : A) : ⊥ ≤ a :=
Inf_le !mem_univ
lemma eq_bot {a : A} : (∀ b, a ≤ b) → a = ⊥ :=
assume h,
have a ≤ ⊥, from le_Inf (take b bin, h b),
le.antisymm this !bot_le
lemma le_top (a : A) : a ≤ :=
le_Sup !mem_univ
lemma eq_top {a : A} : (∀ b, b ≤ a) → a = :=
assume h,
have ≤ a, from Sup_le (take b bin, h b),
le.antisymm !le_top this
lemma Inf_singleton {a : A} : ⨅'{a} = a :=
have ⨅'{a} ≤ a, from
Inf_le !mem_insert,
have a ≤ ⨅'{a}, from
le_Inf (take b, suppose b ∈ '{a}, assert b = a, from eq_of_mem_singleton this, by rewrite this; apply le.refl),
le.antisymm `⨅'{a} ≤ a` `a ≤ ⨅'{a}`
lemma Sup_singleton {a : A} : ⨆'{a} = a :=
have ⨆'{a} ≤ a, from
Sup_le (take b, suppose b ∈ '{a}, assert b = a, from eq_of_mem_singleton this, by rewrite this; apply le.refl),
have a ≤ ⨆'{a}, from
le_Sup !mem_insert,
le.antisymm `⨆'{a} ≤ a` `a ≤ ⨆'{a}`
lemma Inf_antimono {s₁ s₂ : set A} : s₁ ⊆ s₂ → ⨅ s₂ ≤ ⨅ s₁ :=
suppose s₁ ⊆ s₂, le_Inf (take a : A, suppose a ∈ s₁, Inf_le (mem_of_subset_of_mem `s₁ ⊆ s₂` `a ∈ s₁`))
lemma Sup_mono {s₁ s₂ : set A} : s₁ ⊆ s₂ → ⨆ s₁ ≤ ⨆ s₂ :=
suppose s₁ ⊆ s₂, Sup_le (take a : A, suppose a ∈ s₁, le_Sup (mem_of_subset_of_mem `s₁ ⊆ s₂` `a ∈ s₁`))
lemma Inf_union (s₁ s₂ : set A) : ⨅ (s₁ s₂) = (⨅s₁) ⊓ (⨅s₂) :=
have le₁ : ⨅ (s₁ s₂) ≤ (⨅s₁) ⊓ (⨅s₂), from
!le_inf
(le_Inf (take a : A, suppose a ∈ s₁, Inf_le (mem_unionl `a ∈ s₁`)))
(le_Inf (take a : A, suppose a ∈ s₂, Inf_le (mem_unionr `a ∈ s₂`))),
have le₂ : (⨅s₁) ⊓ (⨅s₂) ≤ ⨅ (s₁ s₂), from
le_Inf (take a : A, suppose a ∈ s₁ s₂,
or.elim this
(suppose a ∈ s₁,
have (⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₁, from !inf_le_left,
have ⨅s₁ ≤ a, from Inf_le `a ∈ s₁`,
le.trans `(⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₁` `⨅s₁ ≤ a`)
(suppose a ∈ s₂,
have (⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₂, from !inf_le_right,
have ⨅s₂ ≤ a, from Inf_le `a ∈ s₂`,
le.trans `(⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₂` `⨅s₂ ≤ a`)),
le.antisymm le₁ le₂
lemma Sup_union (s₁ s₂ : set A) : ⨆ (s₁ s₂) = (⨆s₁) ⊔ (⨆s₂) :=
have le₁ : ⨆ (s₁ s₂) ≤ (⨆s₁) ⊔ (⨆s₂), from
Sup_le (take a : A, suppose a ∈ s₁ s₂,
or.elim this
(suppose a ∈ s₁,
have a ≤ ⨆s₁, from le_Sup `a ∈ s₁`,
have ⨆s₁ ≤ (⨆s₁) ⊔ (⨆s₂), from !le_sup_left,
le.trans `a ≤ ⨆s₁` `⨆s₁ ≤ (⨆s₁) ⊔ (⨆s₂)`)
(suppose a ∈ s₂,
have a ≤ ⨆s₂, from le_Sup `a ∈ s₂`,
have ⨆s₂ ≤ (⨆s₁) ⊔ (⨆s₂), from !le_sup_right,
le.trans `a ≤ ⨆s₂` `⨆s₂ ≤ (⨆s₁) ⊔ (⨆s₂)`)),
have le₂ : (⨆s₁) ⊔ (⨆s₂) ≤ ⨆ (s₁ s₂), from
!sup_le
(Sup_le (take a : A, suppose a ∈ s₁, le_Sup (mem_unionl `a ∈ s₁`)))
(Sup_le (take a : A, suppose a ∈ s₂, le_Sup (mem_unionr `a ∈ s₂`))),
le.antisymm le₁ le₂
lemma Inf_empty_eq_Sup_univ : ⨅ (∅ : set A) = ⨆ univ :=
have le₁ : ⨅ (∅ : set A) ≤ ⨆ univ, from
le_Sup !mem_univ,
have le₂ : ⨆ univ ≤ ⨅ ∅, from
le_Inf (take a : A, suppose a ∈ ∅, absurd this !not_mem_empty),
le.antisymm le₁ le₂
lemma Sup_empty_eq_Inf_univ : ⨆ (∅ : set A) = ⨅ univ :=
have le₁ : ⨆ (∅ : set A) ≤ ⨅ univ, from
Sup_le (take a, suppose a ∈ ∅, absurd this !not_mem_empty),
have le₂ : ⨅ univ ≤ ⨆ (∅ : set A), from
Inf_le !mem_univ,
le.antisymm le₁ le₂
end complete_lattice
/- complete lattice instances -/
section
open eq.ops complete_lattice
definition complete_lattice_fun [instance] (A B : Type) [complete_lattice B] :
complete_lattice (A → B) :=
⦃ complete_lattice, lattice_fun A B,
Inf := λS x, Inf ((λf, f x) ' S),
le_Inf := take f S H x,
le_Inf (take y Hy, obtain g `g ∈ S` `g x = y`, from Hy, `g x = y` ▸ H g `g ∈ S` x),
Inf_le := take f S `f ∈ S` x,
Inf_le (exists.intro f (and.intro `f ∈ S` rfl)),
Sup := λS x, Sup ((λf, f x) ' S),
le_Sup := take f S `f ∈ S` x,
le_Sup (exists.intro f (and.intro `f ∈ S` rfl)),
Sup_le := take f S H x,
Sup_le (take y Hy, obtain g `g ∈ S` `g x = y`, from Hy, `g x = y` ▸ H g `g ∈ S` x)
section
open classical -- Prop and set are only in the classical setting a complete lattice
definition complete_lattice_Prop [instance] : complete_lattice Prop :=
⦃ complete_lattice, lattice_Prop,
Inf := λS, false ∉ S,
le_Inf := take x S H Hx Hf,
H _ Hf Hx,
Inf_le := take x S Hx Hf,
(classical.cases_on x (take x, true.intro) Hf) Hx,
Sup := λS, true ∈ S,
le_Sup := take x S Hx H,
iff_subst (iff.intro (take H, true.intro) (take H', H)) Hx,
Sup_le := take x S H Ht,
H _ Ht true.intro
lemma sInter_eq_Inf_fun {A : Type} (S : set (set A)) : ⋂₀ S = @Inf (A → Prop) _ S :=
funext (take x,
calc
(⋂₀ S) x = ∀₀ P ∈ S, P x : rfl
... = ¬ (∃₀ P ∈ S, P x = false) :
begin
rewrite not_bounded_exists,
apply bounded_forall_congr,
intros,
rewrite eq_false,
rewrite not_not_iff
end
... = @Inf (A → Prop) _ S x : rfl)
lemma sUnion_eq_Sup_fun {A : Type} (S : set (set A)) : ⋃₀ S = @Sup (A → Prop) _ S :=
funext (take x,
calc
(⋃₀ S) x = ∃₀ P ∈ S, P x : rfl
... = (∃₀ P ∈ S, P x = true) :
begin
apply bounded_exists_congr,
intros,
rewrite eq_true
end
... = @Sup (A → Prop) _ S x : rfl)
definition complete_lattice_set [instance] (A : Type) : complete_lattice (set A) :=
⦃ complete_lattice,
le := subset,
le_refl := @le_refl (A → Prop) _,
le_trans := @le_trans (A → Prop) _,
le_antisymm := @le_antisymm (A → Prop) _,
inf := inter,
sup := union,
inf_le_left := @inf_le_left (A → Prop) _,
inf_le_right := @inf_le_right (A → Prop) _,
le_inf := @le_inf (A → Prop) _,
le_sup_left := @le_sup_left (A → Prop) _,
le_sup_right := @le_sup_right (A → Prop) _,
sup_le := @sup_le (A → Prop) _,
Inf := sInter,
Sup := sUnion,
le_Inf := begin intros X S H, rewrite sInter_eq_Inf_fun, apply (@le_Inf (A → Prop) _), exact H end,
Inf_le := begin intros X S H, rewrite sInter_eq_Inf_fun, apply (@Inf_le (A → Prop) _), exact H end,
le_Sup := begin intros X S H, rewrite sUnion_eq_Sup_fun, apply (@le_Sup (A → Prop) _), exact H end,
Sup_le := begin intros X S H, rewrite sUnion_eq_Sup_fun, apply (@Sup_le (A → Prop) _), exact H end
end
end