lean2/hott/init/logic.hlean

704 lines
24 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Floris van Doorn
-/
prelude
import init.reserved_notation
open unit
definition id [reducible] [unfold_full] {A : Type} (a : A) : A :=
a
/- not -/
definition not [reducible] (a : Type) := a → empty
prefix ¬ := not
definition absurd {a b : Type} (H₁ : a) (H₂ : ¬a) : b :=
empty.rec (λ e, b) (H₂ H₁)
definition mt {a b : Type} (H₁ : a → b) (H₂ : ¬b) : ¬a :=
assume Ha : a, absurd (H₁ Ha) H₂
definition not_empty : ¬empty :=
assume H : empty, H
definition non_contradictory (a : Type) : Type := ¬¬a
definition non_contradictory_intro {a : Type} (Ha : a) : ¬¬a :=
assume Hna : ¬a, absurd Ha Hna
definition not.intro {a : Type} (H : a → empty) : ¬a := H
/- empty -/
definition empty.elim {c : Type} (H : empty) : c :=
empty.rec _ H
/- eq -/
infix = := eq
definition rfl {A : Type} {a : A} := eq.refl a
/-
These notions are here only to make porting from the standard library easier.
They are defined again in init/path.hlean, and those definitions will be used
throughout the HoTT-library. That's why the notation for eq below is only local.
-/
namespace eq
variables {A : Type} {a b c : A}
definition subst [unfold 5] {P : A → Type} (H₁ : a = b) (H₂ : P a) : P b :=
eq.rec H₂ H₁
definition trans [unfold 5] (H₁ : a = b) (H₂ : b = c) : a = c :=
subst H₂ H₁
definition symm [unfold 4] (H : a = b) : b = a :=
subst H (refl a)
definition mp {a b : Type} : (a = b) → a → b :=
eq.rec_on
definition mpr {a b : Type} : (a = b) → b → a :=
assume H₁ H₂, eq.rec_on (eq.symm H₁) H₂
namespace ops end ops -- this is just to ensure that this namespace exists. There is nothing in it
end eq
local postfix ⁻¹ := eq.symm --input with \sy or \-1 or \inv
local infixl ⬝ := eq.trans
local infixr ▸ := eq.subst
-- Auxiliary definition used by automation. It has the same type of eq.rec in the standard library
definition eq.nrec.{l₁ l₂} {A : Type.{l₂}} {a : A} {C : A → Type.{l₁}} (H₁ : C a) (b : A) (H₂ : a = b) : C b :=
eq.rec H₁ H₂
definition congr {A B : Type} {f₁ f₂ : A → B} {a₁ a₂ : A} (H₁ : f₁ = f₂) (H₂ : a₁ = a₂) : f₁ a₁ = f₂ a₂ :=
eq.subst H₁ (eq.subst H₂ rfl)
definition congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
eq.subst H (eq.refl (f a))
definition congr_arg {A B : Type} (a a' : A) (f : A → B) (Ha : a = a') : f a = f a' :=
eq.subst Ha rfl
definition congr_arg2 {A B C : Type} (a a' : A) (b b' : B) (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
eq.subst Ha (eq.subst Hb rfl)
section
variables {A : Type} {a b c: A}
open eq.ops
definition trans_rel_left (R : A → A → Type) (H₁ : R a b) (H₂ : b = c) : R a c :=
H₂ ▸ H₁
definition trans_rel_right (R : A → A → Type) (H₁ : a = b) (H₂ : R b c) : R a c :=
H₁⁻¹ ▸ H₂
end
attribute eq.subst [subst]
attribute eq.refl [refl]
attribute eq.trans [trans]
attribute eq.symm [symm]
namespace lift
definition down_up.{l₁ l₂} {A : Type.{l₁}} (a : A) : down (up.{l₁ l₂} a) = a :=
rfl
definition up_down.{l₁ l₂} {A : Type.{l₁}} (a : lift.{l₁ l₂} A) : up (down a) = a :=
lift.rec_on a (λ d, rfl)
end lift
/- ne -/
definition ne [reducible] {A : Type} (a b : A) := ¬(a = b)
notation a ≠ b := ne a b
namespace ne
open eq.ops
variable {A : Type}
variables {a b : A}
definition intro (H : a = b → empty) : a ≠ b := H
definition elim (H : a ≠ b) : a = b → empty := H
definition irrefl (H : a ≠ a) : empty := H rfl
definition symm (H : a ≠ b) : b ≠ a :=
assume (H₁ : b = a), H (H₁⁻¹)
end ne
definition empty_of_ne {A : Type} {a : A} : a ≠ a → empty := ne.irrefl
section
open eq.ops
variables {p : Type₀}
definition ne_empty_of_self : p → p ≠ empty :=
assume (Hp : p) (Heq : p = empty), Heq ▸ Hp
definition ne_unit_of_not : ¬p → p ≠ unit :=
assume (Hnp : ¬p) (Heq : p = unit), (Heq ▸ Hnp) star
definition unit_ne_empty : ¬unit = empty :=
ne_empty_of_self star
end
/- prod -/
abbreviation pair [constructor] := @prod.mk
infixr × := prod
variables {a b c d : Type}
attribute prod.rec [elim]
attribute prod.mk [intro!]
protected definition prod.elim [unfold 4] (H₁ : a × b) (H₂ : a → b → c) : c :=
prod.rec H₂ H₁
definition prod.swap [unfold 3] : a × b → b × a :=
prod.rec (λHa Hb, prod.mk Hb Ha)
/- sum -/
infixr ⊎ := sum
infixr + := sum
attribute sum.rec [elim]
protected definition sum.elim [unfold 4] (H₁ : a ⊎ b) (H₂ : a → c) (H₃ : b → c) : c :=
sum.rec H₂ H₃ H₁
definition non_contradictory_em (a : Type) : ¬¬(a ⊎ ¬a) :=
assume not_em : ¬(a ⊎ ¬a),
have neg_a : ¬a, from
assume pos_a : a, absurd (sum.inl pos_a) not_em,
absurd (sum.inr neg_a) not_em
definition sum.swap : a ⊎ b → b ⊎ a := sum.rec sum.inr sum.inl
/- iff -/
definition iff (a b : Type) := (a → b) × (b → a)
notation a <-> b := iff a b
notation a ↔ b := iff a b
definition iff.intro : (a → b) → (b → a) → (a ↔ b) := prod.mk
attribute iff.intro [intro!]
definition iff.elim : ((a → b) → (b → a) → c) → (a ↔ b) → c := prod.rec
attribute iff.elim [recursor 5] [elim]
definition iff.elim_left : (a ↔ b) → a → b := prod.pr1
definition iff.mp := @iff.elim_left
definition iff.elim_right : (a ↔ b) → b → a := prod.pr2
definition iff.mpr := @iff.elim_right
definition iff.refl [refl] (a : Type) : a ↔ a :=
iff.intro (assume H, H) (assume H, H)
definition iff.rfl {a : Type} : a ↔ a :=
iff.refl a
definition iff.trans [trans] (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
iff.intro
(assume Ha, iff.mp H₂ (iff.mp H₁ Ha))
(assume Hc, iff.mpr H₁ (iff.mpr H₂ Hc))
definition iff.symm [symm] (H : a ↔ b) : b ↔ a :=
iff.intro (iff.elim_right H) (iff.elim_left H)
definition iff.comm : (a ↔ b) ↔ (b ↔ a) :=
iff.intro iff.symm iff.symm
definition iff.of_eq {a b : Type} (H : a = b) : a ↔ b :=
eq.rec_on H iff.rfl
definition not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b :=
iff.intro
(assume (Hna : ¬ a) (Hb : b), Hna (iff.elim_right H₁ Hb))
(assume (Hnb : ¬ b) (Ha : a), Hnb (iff.elim_left H₁ Ha))
definition of_iff_unit (H : a ↔ unit) : a :=
iff.mp (iff.symm H) star
definition not_of_iff_empty : (a ↔ empty) → ¬a := iff.mp
definition iff_unit_intro (H : a) : a ↔ unit :=
iff.intro
(λ Hl, star)
(λ Hr, H)
definition iff_empty_intro (H : ¬a) : a ↔ empty :=
iff.intro H (empty.rec _)
definition not_non_contradictory_iff_absurd (a : Type) : ¬¬¬a ↔ ¬a :=
iff.intro
(λ (Hl : ¬¬¬a) (Ha : a), Hl (non_contradictory_intro Ha))
absurd
definition imp_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a → b) ↔ (c → d) :=
iff.intro
(λHab Hc, iff.mp H2 (Hab (iff.mpr H1 Hc)))
(λHcd Ha, iff.mpr H2 (Hcd (iff.mp H1 Ha)))
definition not_not_intro (Ha : a) : ¬¬a :=
assume Hna : ¬a, Hna Ha
definition not_of_not_not_not (H : ¬¬¬a) : ¬a :=
λ Ha, absurd (not_not_intro Ha) H
definition not_unit [simp] : (¬ unit) ↔ empty :=
iff_empty_intro (not_not_intro star)
definition not_empty_iff [simp] : (¬ empty) ↔ unit :=
iff_unit_intro not_empty
definition not_congr (H : a ↔ b) : ¬a ↔ ¬b :=
iff.intro (λ H₁ H₂, H₁ (iff.mpr H H₂)) (λ H₁ H₂, H₁ (iff.mp H H₂))
definition ne_self_iff_empty [simp] {A : Type} (a : A) : (not (a = a)) ↔ empty :=
iff.intro empty_of_ne empty.elim
definition eq_self_iff_unit [simp] {A : Type} (a : A) : (a = a) ↔ unit :=
iff_unit_intro rfl
definition iff_not_self [simp] (a : Type) : (a ↔ ¬a) ↔ empty :=
iff_empty_intro (λ H,
have H' : ¬a, from (λ Ha, (iff.mp H Ha) Ha),
H' (iff.mpr H H'))
definition not_iff_self [simp] (a : Type) : (¬a ↔ a) ↔ empty :=
iff_empty_intro (λ H,
have H' : ¬a, from (λ Ha, (iff.mpr H Ha) Ha),
H' (iff.mp H H'))
definition unit_iff_empty [simp] : (unit ↔ empty) ↔ empty :=
iff_empty_intro (λ H, iff.mp H star)
definition empty_iff_unit [simp] : (empty ↔ unit) ↔ empty :=
iff_empty_intro (λ H, iff.mpr H star)
definition empty_of_unit_iff_empty : (unit ↔ empty) → empty :=
assume H, iff.mp H star
/- prod simp rules -/
definition prod.imp (H₂ : a → c) (H₃ : b → d) : a × b → c × d :=
prod.rec (λHa Hb, prod.mk (H₂ Ha) (H₃ Hb))
definition prod_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a × b) ↔ (c × d) :=
iff.intro (prod.imp (iff.mp H1) (iff.mp H2)) (prod.imp (iff.mpr H1) (iff.mpr H2))
definition prod.comm [simp] : a × b ↔ b × a :=
iff.intro prod.swap prod.swap
definition prod.assoc [simp] : (a × b) × c ↔ a × (b × c) :=
iff.intro
(prod.rec (λ H' Hc, prod.rec (λ Ha Hb, prod.mk Ha (prod.mk Hb Hc)) H'))
(prod.rec (λ Ha, prod.rec (λ Hb Hc, prod.mk (prod.mk Ha Hb) Hc)))
definition prod.pr1_comm [simp] : a × (b × c) ↔ b × (a × c) :=
iff.trans (iff.symm !prod.assoc) (iff.trans (prod_congr !prod.comm !iff.refl) !prod.assoc)
definition prod_iff_left {a b : Type} (Hb : b) : (a × b) ↔ a :=
iff.intro prod.pr1 (λHa, prod.mk Ha Hb)
definition prod_iff_right {a b : Type} (Ha : a) : (a × b) ↔ b :=
iff.intro prod.pr2 (prod.mk Ha)
definition prod_unit [simp] (a : Type) : a × unit ↔ a :=
prod_iff_left star
definition unit_prod [simp] (a : Type) : unit × a ↔ a :=
prod_iff_right star
definition prod_empty [simp] (a : Type) : a × empty ↔ empty :=
iff_empty_intro prod.pr2
definition empty_prod [simp] (a : Type) : empty × a ↔ empty :=
iff_empty_intro prod.pr1
definition not_prod_self [simp] (a : Type) : (¬a × a) ↔ empty :=
iff_empty_intro (λ H, prod.elim H (λ H₁ H₂, absurd H₂ H₁))
definition prod_not_self [simp] (a : Type) : (a × ¬a) ↔ empty :=
iff_empty_intro (λ H, prod.elim H (λ H₁ H₂, absurd H₁ H₂))
definition prod_self [simp] (a : Type) : a × a ↔ a :=
iff.intro prod.pr1 (assume H, prod.mk H H)
/- sum simp rules -/
definition sum.imp (H₂ : a → c) (H₃ : b → d) : a ⊎ b → c ⊎ d :=
sum.rec (λ H, sum.inl (H₂ H)) (λ H, sum.inr (H₃ H))
definition sum.imp_left (H : a → b) : a ⊎ c → b ⊎ c :=
sum.imp H id
definition sum.imp_right (H : a → b) : c ⊎ a → c ⊎ b :=
sum.imp id H
definition sum_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a ⊎ b) ↔ (c ⊎ d) :=
iff.intro (sum.imp (iff.mp H1) (iff.mp H2)) (sum.imp (iff.mpr H1) (iff.mpr H2))
definition sum.comm [simp] : a ⊎ b ↔ b ⊎ a := iff.intro sum.swap sum.swap
definition sum.assoc [simp] : (a ⊎ b) ⊎ c ↔ a ⊎ (b ⊎ c) :=
iff.intro
(sum.rec (sum.imp_right sum.inl) (λ H, sum.inr (sum.inr H)))
(sum.rec (λ H, sum.inl (sum.inl H)) (sum.imp_left sum.inr))
definition sum.left_comm [simp] : a ⊎ (b ⊎ c) ↔ b ⊎ (a ⊎ c) :=
iff.trans (iff.symm !sum.assoc) (iff.trans (sum_congr !sum.comm !iff.refl) !sum.assoc)
definition sum_unit [simp] (a : Type) : a ⊎ unit ↔ unit :=
iff_unit_intro (sum.inr star)
definition unit_sum [simp] (a : Type) : unit ⊎ a ↔ unit :=
iff_unit_intro (sum.inl star)
definition sum_empty [simp] (a : Type) : a ⊎ empty ↔ a :=
iff.intro (sum.rec id empty.elim) sum.inl
definition empty_sum [simp] (a : Type) : empty ⊎ a ↔ a :=
iff.trans sum.comm !sum_empty
definition sum_self [simp] (a : Type) : a ⊎ a ↔ a :=
iff.intro (sum.rec id id) sum.inl
/- sum resolution rulse -/
definition sum.resolve_left {a b : Type} (H : a ⊎ b) (na : ¬ a) : b :=
sum.elim H (λ Ha, absurd Ha na) id
definition sum.neg_resolve_left {a b : Type} (H : ¬ a ⊎ b) (Ha : a) : b :=
sum.elim H (λ na, absurd Ha na) id
definition sum.resolve_right {a b : Type} (H : a ⊎ b) (nb : ¬ b) : a :=
sum.elim H id (λ Hb, absurd Hb nb)
definition sum.neg_resolve_right {a b : Type} (H : a ⊎ ¬ b) (Hb : b) : a :=
sum.elim H id (λ nb, absurd Hb nb)
/- iff simp rules -/
definition iff_unit [simp] (a : Type) : (a ↔ unit) ↔ a :=
iff.intro (assume H, iff.mpr H star) iff_unit_intro
definition unit_iff [simp] (a : Type) : (unit ↔ a) ↔ a :=
iff.trans iff.comm !iff_unit
definition iff_empty [simp] (a : Type) : (a ↔ empty) ↔ ¬ a :=
iff.intro prod.pr1 iff_empty_intro
definition empty_iff [simp] (a : Type) : (empty ↔ a) ↔ ¬ a :=
iff.trans iff.comm !iff_empty
definition iff_self [simp] (a : Type) : (a ↔ a) ↔ unit :=
iff_unit_intro iff.rfl
definition iff_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a ↔ b) ↔ (c ↔ d) :=
prod_congr (imp_congr H1 H2) (imp_congr H2 H1)
/- decidable -/
inductive decidable [class] (p : Type) : Type :=
| inl : p → decidable p
| inr : ¬p → decidable p
definition decidable_unit [instance] : decidable unit :=
decidable.inl star
definition decidable_empty [instance] : decidable empty :=
decidable.inr not_empty
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
-- to the branches
definition dite (c : Type) [H : decidable c] {A : Type} : (c → A) → (¬ c → A) → A :=
decidable.rec_on H
/- if-then-else -/
definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A :=
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
namespace decidable
variables {p q : Type}
definition by_cases {q : Type} [C : decidable p] : (p → q) → (¬p → q) → q := !dite
theorem em (p : Type) [H : decidable p] : p ⊎ ¬p := by_cases sum.inl sum.inr
theorem by_contradiction [Hp : decidable p] (H : ¬p → empty) : p :=
if H1 : p then H1 else empty.rec _ (H H1)
end decidable
section
variables {p q : Type}
open decidable
definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q :=
if Hp : p then inl (iff.mp H Hp)
else inr (iff.mp (not_iff_not_of_iff H) Hp)
definition decidable_of_decidable_of_eq {p q : Type} (Hp : decidable p) (H : p = q)
: decidable q :=
decidable_of_decidable_of_iff Hp (iff.of_eq H)
protected definition sum.by_cases [Hp : decidable p] [Hq : decidable q] {A : Type}
(h : p ⊎ q) (h₁ : p → A) (h₂ : q → A) : A :=
if hp : p then h₁ hp else
if hq : q then h₂ hq else
empty.rec _ (sum.elim h hp hq)
end
section
variables {p q : Type}
open decidable (rec_on inl inr)
definition decidable_prod [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p × q) :=
if hp : p then
if hq : q then inl (prod.mk hp hq)
else inr (assume H : p × q, hq (prod.pr2 H))
else inr (assume H : p × q, hp (prod.pr1 H))
definition decidable_sum [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ⊎ q) :=
if hp : p then inl (sum.inl hp) else
if hq : q then inl (sum.inr hq) else
inr (sum.rec hp hq)
definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) :=
if hp : p then inr (absurd hp) else inl hp
definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
if hp : p then
if hq : q then inl (assume H, hq)
else inr (assume H : p → q, absurd (H hp) hq)
else inl (assume Hp, absurd Hp hp)
definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
decidable_prod
end
definition decidable_pred [reducible] {A : Type} (R : A → Type) := Π (a : A), decidable (R a)
definition decidable_rel [reducible] {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b)
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] (a b : A) : decidable (a ≠ b) :=
decidable_implies
namespace bool
theorem ff_ne_tt : ff = tt → empty
| [none]
end bool
open bool
definition is_dec_eq {A : Type} (p : A → A → bool) : Type := Π ⦃x y : A⦄, p x y = tt → x = y
definition is_dec_refl {A : Type} (p : A → A → bool) : Type := Πx, p x x = tt
open decidable
protected definition bool.has_decidable_eq [instance] : Πa b : bool, decidable (a = b)
| ff ff := inl rfl
| ff tt := inr ff_ne_tt
| tt ff := inr (ne.symm ff_ne_tt)
| tt tt := inl rfl
definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A :=
take x y : A, if Hp : p x y = tt then inl (H₁ Hp)
else inr (assume Hxy : x = y, (eq.subst Hxy Hp) (H₂ y))
/- inhabited -/
inductive inhabited [class] (A : Type) : Type :=
mk : A → inhabited A
protected definition inhabited.value {A : Type} : inhabited A → A :=
inhabited.rec (λa, a)
protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
inhabited.rec H2 H1
definition default (A : Type) [H : inhabited A] : A :=
inhabited.value H
definition arbitrary [irreducible] (A : Type) [H : inhabited A] : A :=
inhabited.value H
definition Type.is_inhabited [instance] : inhabited Type :=
inhabited.mk (lift unit)
definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
inhabited.rec_on H (λb, inhabited.mk (λa, b))
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
inhabited (Πx, B x) :=
inhabited.mk (λa, !default)
protected definition bool.is_inhabited [instance] : inhabited bool :=
inhabited.mk ff
protected definition pos_num.is_inhabited [instance] : inhabited pos_num :=
inhabited.mk pos_num.one
protected definition num.is_inhabited [instance] : inhabited num :=
inhabited.mk num.zero
inductive nonempty [class] (A : Type) : Type :=
intro : A → nonempty A
protected definition nonempty.elim {A : Type} {B : Type} (H1 : nonempty A) (H2 : A → B) : B :=
nonempty.rec H2 H1
theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A :=
nonempty.intro !default
theorem nonempty_of_exists {A : Type} {P : A → Type} : (sigma P) → nonempty A :=
sigma.rec (λw H, nonempty.intro w)
/- subsingleton -/
inductive subsingleton [class] (A : Type) : Type :=
intro : (Π a b : A, a = b) → subsingleton A
protected definition subsingleton.elim {A : Type} [H : subsingleton A] : Π(a b : A), a = b :=
subsingleton.rec (λp, p) H
protected theorem rec_subsingleton {p : Type} [H : decidable p]
{H1 : p → Type} {H2 : ¬p → Type}
[H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)]
: subsingleton (decidable.rec_on H H1 H2) :=
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
theorem if_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (ite c t e) = t :=
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc)
H
theorem if_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (ite c t e) = e :=
decidable.rec
(λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
H
theorem if_t_t [simp] (c : Type) [H : decidable c] {A : Type} (t : A) : (ite c t t) = t :=
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
H
theorem implies_of_if_pos {c t e : Type} [H : decidable c] (h : ite c t e) : c → t :=
assume Hc, eq.rec_on (if_pos Hc) h
theorem implies_of_if_neg {c t e : Type} [H : decidable c] (h : ite c t e) : ¬c → e :=
assume Hnc, eq.rec_on (if_neg Hnc) h
theorem if_ctx_congr {A : Type} {b c : Type} [dec_b : decidable b] [dec_c : decidable c]
{x y u v : A}
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
ite b x y = ite c u v :=
decidable.rec_on dec_b
(λ hp : b, calc
ite b x y = x : if_pos hp
... = u : h_t (iff.mp h_c hp)
... = ite c u v : if_pos (iff.mp h_c hp))
(λ hn : ¬b, calc
ite b x y = y : if_neg hn
... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
... = ite c u v : if_neg (iff.mp (not_iff_not_of_iff h_c) hn))
theorem if_congr [congr] {A : Type} {b c : Type} [dec_b : decidable b] [dec_c : decidable c]
{x y u v : A}
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
ite b x y = ite c u v :=
@if_ctx_congr A b c dec_b dec_c x y u v h_c (λ h, h_t) (λ h, h_e)
theorem if_ctx_simp_congr {A : Type} {b c : Type} [dec_b : decidable b] {x y u v : A}
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
@if_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x y u v h_c h_t h_e
theorem if_simp_congr [congr] {A : Type} {b c : Type} [dec_b : decidable b] {x y u v : A}
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
@if_ctx_simp_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e)
definition if_unit [simp] {A : Type} (t e : A) : (if unit then t else e) = t :=
if_pos star
definition if_empty [simp] {A : Type} (t e : A) : (if empty then t else e) = e :=
if_neg not_empty
theorem if_ctx_congr_prop {b c x y u v : Type} [dec_b : decidable b] [dec_c : decidable c]
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
ite b x y ↔ ite c u v :=
decidable.rec_on dec_b
(λ hp : b, calc
ite b x y ↔ x : iff.of_eq (if_pos hp)
... ↔ u : h_t (iff.mp h_c hp)
... ↔ ite c u v : iff.of_eq (if_pos (iff.mp h_c hp)))
(λ hn : ¬b, calc
ite b x y ↔ y : iff.of_eq (if_neg hn)
... ↔ v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
... ↔ ite c u v : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn)))
theorem if_congr_prop [congr] {b c x y u v : Type} [dec_b : decidable b] [dec_c : decidable c]
(h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) :
ite b x y ↔ ite c u v :=
if_ctx_congr_prop h_c (λ h, h_t) (λ h, h_e)
theorem if_ctx_simp_congr_prop {b c x y u v : Type} [dec_b : decidable b]
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Type u v) :=
@if_ctx_congr_prop b c x y u v dec_b (decidable_of_decidable_of_iff dec_b h_c) h_c h_t h_e
theorem if_simp_congr_prop [congr] {b c x y u v : Type} [dec_b : decidable b]
(h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) :
ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Type u v) :=
@if_ctx_simp_congr_prop b c x y u v dec_b h_c (λ h, h_t) (λ h, h_e)
2015-12-09 20:53:48 +00:00
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
theorem dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
rfl
definition is_unit (c : Type) [H : decidable c] : Type₀ :=
if c then unit else empty
definition is_empty (c : Type) [H : decidable c] : Type₀ :=
if c then empty else unit
definition of_is_unit {c : Type} [H₁ : decidable c] (H₂ : is_unit c) : c :=
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, empty.rec _ (if_neg Hnc ▸ H₂))
notation `dec_star` := of_is_unit star
theorem not_of_not_is_unit {c : Type} [H₁ : decidable c] (H₂ : ¬ is_unit c) : ¬ c :=
if Hc : c then absurd star (if_pos Hc ▸ H₂) else Hc
theorem not_of_is_empty {c : Type} [H₁ : decidable c] (H₂ : is_empty c) : ¬ c :=
if Hc : c then empty.rec _ (if_pos Hc ▸ H₂) else Hc
theorem of_not_is_empty {c : Type} [H₁ : decidable c] (H₂ : ¬ is_empty c) : c :=
if Hc : c then Hc else absurd star (if_neg Hc ▸ H₂)
-- The following symbols should not be considered in the pattern inference procedure used by
-- heuristic instantiation.
attribute prod sum not iff ite dite eq ne [no_pattern]
-- namespace used to collect congruence rules for "contextual simplification"
namespace contextual
attribute if_ctx_simp_congr [congr]
attribute if_ctx_simp_congr_prop [congr]
end contextual