lean2/library/data/real/division.lean

663 lines
22 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
At this point, we no longer proceed constructively: this file makes heavy use of decidability
and excluded middle.
-/
import data.real.basic data.real.order data.rat data.nat
open -[coercions] rat
open -[coercions] nat
open eq.ops pnat classical
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
namespace rat_seq
-----------------------------
-- Facts about absolute values of sequences, to define inverse
definition s_abs (s : seq) : seq := λ n, abs (s n)
theorem abs_reg_of_reg {s : seq} (Hs : regular s) : regular (s_abs s) :=
begin
intros,
apply rat.le.trans,
apply abs_abs_sub_abs_le_abs_sub,
apply Hs
end
theorem abs_pos_of_nonzero {s : seq} (Hs : regular s) (Hnz : sep s zero) :
∃ N : +, ∀ m : +, m ≥ N → abs (s m) ≥ N⁻¹ :=
begin
rewrite [↑sep at Hnz, ↑s_lt at Hnz],
apply or.elim Hnz,
intro Hnz1,
have H' : pos (sneg s), begin
apply pos_of_pos_equiv,
rotate 2,
apply Hnz1,
rotate 1,
apply s_zero_add,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
end,
cases bdd_away_of_pos (reg_neg_reg Hs) H' with [N, HN],
existsi N,
intro m Hm,
apply rat.le.trans,
apply HN m Hm,
rewrite ↑sneg,
apply neg_le_abs_self,
intro Hnz2,
let H' := pos_of_pos_equiv (reg_add_reg Hs (reg_neg_reg zero_is_reg)) (s_add_zero s Hs) Hnz2,
let H'' := bdd_away_of_pos Hs H',
cases H'' with [N, HN],
existsi N,
intro m Hm,
apply rat.le.trans,
apply HN m Hm,
apply le_abs_self
end
theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_abs s ≡ s_abs t :=
begin
rewrite [↑equiv at *],
intro n,
rewrite ↑s_abs,
apply rat.le.trans,
apply abs_abs_sub_abs_le_abs_sub,
apply Heq
end
theorem sep_zero_of_pos {s : seq} (Hs : regular s) (Hpos : pos s) : sep s zero :=
begin
apply or.inr,
apply pos_of_pos_equiv,
rotate 2,
apply Hpos,
apply Hs,
apply equiv.symm,
apply s_sub_zero Hs
end
------------------------
-- This section could be cleaned up.
private noncomputable definition pb {s : seq} (Hs : regular s) (Hpos : pos s) :=
some (abs_pos_of_nonzero Hs (sep_zero_of_pos Hs Hpos))
private noncomputable definition ps {s : seq} (Hs : regular s) (Hsep : sep s zero) :=
some (abs_pos_of_nonzero Hs Hsep)
private theorem pb_spec {s : seq} (Hs : regular s) (Hpos : pos s) :
∀ m : +, m ≥ (pb Hs Hpos) → abs (s m) ≥ (pb Hs Hpos)⁻¹ :=
some_spec (abs_pos_of_nonzero Hs (sep_zero_of_pos Hs Hpos))
private theorem ps_spec {s : seq} (Hs : regular s) (Hsep : sep s zero) :
∀ m : +, m ≥ (ps Hs Hsep) → abs (s m) ≥ (ps Hs Hsep)⁻¹ :=
some_spec (abs_pos_of_nonzero Hs Hsep)
noncomputable definition s_inv {s : seq} (Hs : regular s) (n : +) : :=
if H : sep s zero then
(if n < (ps Hs H) then 1 / (s ((ps Hs H) * (ps Hs H) * (ps Hs H)))
else 1 / (s ((ps Hs H) * (ps Hs H) * n)))
else 0
private theorem peq {s : seq} (Hsep : sep s zero) (Hpos : pos s) (Hs : regular s) :
pb Hs Hpos = ps Hs Hsep := rfl
private theorem s_inv_of_sep_lt_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : +}
(Hn : n < (ps Hs Hsep)) : s_inv Hs n = 1 / s ((ps Hs Hsep) * (ps Hs Hsep) * (ps Hs Hsep)) :=
begin
apply eq.trans,
apply dif_pos Hsep,
apply dif_pos Hn
end
private theorem s_inv_of_sep_gt_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : +}
(Hn : n ≥ (ps Hs Hsep)) : s_inv Hs n = 1 / s ((ps Hs Hsep) * (ps Hs Hsep) * n) :=
begin
apply eq.trans,
apply dif_pos Hsep,
apply dif_neg (pnat.not_lt_of_ge Hn)
end
private theorem s_inv_of_pos_lt_p {s : seq} (Hs : regular s) (Hpos : pos s) {n : +}
(Hn : n < (pb Hs Hpos)) : s_inv Hs n = 1 / s ((pb Hs Hpos) * (pb Hs Hpos) * (pb Hs Hpos)) :=
s_inv_of_sep_lt_p Hs (sep_zero_of_pos Hs Hpos) Hn
private theorem s_inv_of_pos_gt_p {s : seq} (Hs : regular s) (Hpos : pos s) {n : +}
(Hn : n ≥ (pb Hs Hpos)) : s_inv Hs n = 1 / s ((pb Hs Hpos) * (pb Hs Hpos) * n) :=
s_inv_of_sep_gt_p Hs (sep_zero_of_pos Hs Hpos) Hn
private theorem le_ps {s : seq} (Hs : regular s) (Hsep : sep s zero) (n : +) :
abs (s_inv Hs n) ≤ (rat_of_pnat (ps Hs Hsep)) :=
if Hn : n < ps Hs Hsep then
(begin
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hn), abs_one_div],
apply div_le_pnat,
apply ps_spec,
apply pnat.mul_le_mul_left
end)
else
(begin
rewrite [(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hn)), abs_one_div],
apply div_le_pnat,
apply ps_spec,
rewrite pnat.mul.assoc,
apply pnat.mul_le_mul_right
end)
theorem s_inv_zero : s_inv zero_is_reg = zero :=
funext (λ n, dif_neg (!not_sep_self))
private theorem s_inv_of_zero' {s : seq} (Hs : regular s) (Hz : ¬ sep s zero) (n : +) : s_inv Hs n = 0 :=
dif_neg Hz
theorem s_inv_of_zero {s : seq} (Hs : regular s) (Hz : ¬ sep s zero) : s_inv Hs = zero :=
begin
apply funext,
intro n,
apply s_inv_of_zero' Hs Hz n
end
private theorem s_ne_zero_of_ge_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : +}
(Hn : n ≥ (ps Hs Hsep)) : s n ≠ 0 :=
begin
let Hps := ps_spec Hs Hsep,
apply ne_zero_of_abs_ne_zero,
apply ne_of_gt,
apply gt_of_ge_of_gt,
apply Hps,
apply Hn,
apply inv_pos
end
theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_inv Hs) :=
begin
rewrite ↑regular,
intros,
have Hsp : s ((ps Hs Hsep) * (ps Hs Hsep) * (ps Hs Hsep)) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep !mul_le_mul_left,
have Hspn : s ((ps Hs Hsep) * (ps Hs Hsep) * n) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep (show (ps Hs Hsep) * (ps Hs Hsep) * n ≥ ps Hs Hsep, by
rewrite pnat.mul.assoc; apply pnat.mul_le_mul_right),
have Hspm : s ((ps Hs Hsep) * (ps Hs Hsep) * m) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep (show (ps Hs Hsep) * (ps Hs Hsep) * m ≥ ps Hs Hsep, by
rewrite pnat.mul.assoc; apply pnat.mul_le_mul_right),
cases em (m < ps Hs Hsep) with [Hmlt, Hmlt],
cases em (n < ps Hs Hsep) with [Hnlt, Hnlt],
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt), (s_inv_of_sep_lt_p Hs Hsep Hnlt)],
rewrite [sub_self, abs_zero],
apply add_invs_nonneg,
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt),
(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hnlt))],
rewrite [(!div_sub_div Hsp Hspn), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul],
apply rat.le.trans,
apply rat.mul_le_mul,
apply Hs,
rewrite [-(mul_one 1), -(!field.div_mul_div Hsp Hspn), abs_mul],
apply rat.mul_le_mul,
rewrite -(s_inv_of_sep_lt_p Hs Hsep Hmlt),
apply le_ps Hs Hsep,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hnlt)),
apply le_ps Hs Hsep,
apply abs_nonneg,
apply le_of_lt !rat_of_pnat_is_pos,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [right_distrib, *pnat_cancel', rat.add.comm],
apply rat.add_le_add_right,
apply inv_ge_of_le,
apply pnat.le_of_lt,
apply Hmlt,
cases em (n < ps Hs Hsep) with [Hnlt, Hnlt],
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hnlt),
(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hmlt))],
rewrite [(!div_sub_div Hspm Hsp), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul],
apply rat.le.trans,
apply rat.mul_le_mul,
apply Hs,
rewrite [-(mul_one 1), -(!field.div_mul_div Hspm Hsp), abs_mul],
apply rat.mul_le_mul,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hmlt)),
apply le_ps Hs Hsep,
rewrite -(s_inv_of_sep_lt_p Hs Hsep Hnlt),
apply le_ps Hs Hsep,
apply abs_nonneg,
apply le_of_lt !rat_of_pnat_is_pos,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [right_distrib, *pnat_cancel', rat.add.comm],
apply rat.add_le_add_left,
apply inv_ge_of_le,
apply pnat.le_of_lt,
apply Hnlt,
rewrite [(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hnlt)),
(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hmlt))],
rewrite [(!div_sub_div Hspm Hspn), div_eq_mul_one_div, abs_mul, *one_mul, *mul_one],
apply rat.le.trans,
apply rat.mul_le_mul,
apply Hs,
rewrite [-(mul_one 1), -(!field.div_mul_div Hspm Hspn), abs_mul],
apply rat.mul_le_mul,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hmlt)),
apply le_ps Hs Hsep,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hnlt)),
apply le_ps Hs Hsep,
apply abs_nonneg,
apply le_of_lt !rat_of_pnat_is_pos,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [right_distrib, *pnat_cancel', rat.add.comm],
apply rat.le.refl
end
theorem s_inv_ne_zero {s : seq} (Hs : regular s) (Hsep : sep s zero) (n : +) : s_inv Hs n ≠ 0 :=
if H : n ≥ ps Hs Hsep then
(begin
rewrite (s_inv_of_sep_gt_p Hs Hsep H),
apply one_div_ne_zero,
apply s_ne_zero_of_ge_p,
apply pnat.le.trans,
apply H,
apply pnat.mul_le_mul_left
end)
else
(begin
rewrite (s_inv_of_sep_lt_p Hs Hsep (lt_of_not_ge H)),
apply one_div_ne_zero,
apply s_ne_zero_of_ge_p,
apply pnat.mul_le_mul_left
end)
theorem mul_inv {s : seq} (Hs : regular s) (Hsep : sep s zero) : smul s (s_inv Hs) ≡ one :=
begin
let Rsi := reg_inv_reg Hs Hsep,
let Rssi := reg_mul_reg Hs Rsi,
apply eq_of_bdd Rssi one_is_reg,
intros,
existsi max (ps Hs Hsep) j,
intro n Hn,
have Hnz : s_inv Hs ((K₂ s (s_inv Hs)) * 2 * n) ≠ 0, from s_inv_ne_zero Hs Hsep _,
rewrite [↑smul, ↑one, rat.mul.comm, -(mul_one_div_cancel Hnz),
-rat.mul_sub_left_distrib, abs_mul],
apply rat.le.trans,
apply rat.mul_le_mul_of_nonneg_right,
apply canon_2_bound_right s,
apply Rsi,
apply abs_nonneg,
have Hp : (K₂ s (s_inv Hs)) * 2 * n ≥ ps Hs Hsep, begin
apply pnat.le.trans,
apply max_left,
rotate 1,
apply pnat.le.trans,
apply Hn,
apply pnat.mul_le_mul_left
end,
have Hnz' : s (((ps Hs Hsep) * (ps Hs Hsep)) * ((K₂ s (s_inv Hs)) * 2 * n)) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep
(show ps Hs Hsep ≤ ((ps Hs Hsep) * (ps Hs Hsep)) * ((K₂ s (s_inv Hs)) * 2 * n),
by rewrite *pnat.mul.assoc; apply pnat.mul_le_mul_right),
rewrite [(s_inv_of_sep_gt_p Hs Hsep Hp), (division_ring.one_div_one_div Hnz')],
apply rat.le.trans,
apply rat.mul_le_mul_of_nonneg_left,
apply Hs,
apply le_of_lt,
apply rat_of_pnat_is_pos,
rewrite [rat.mul.left_distrib, mul.comm ((ps Hs Hsep) * (ps Hs Hsep)), *pnat.mul.assoc,
*(@inv_mul_eq_mul_inv (K₂ s (s_inv Hs))), -*rat.mul.assoc, *inv_cancel_left,
*one_mul, -(add_halves j)],
apply rat.add_le_add,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply max_right,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply pnat.le.trans,
apply max_right,
rotate 1,
apply pnat.le.trans,
apply Hn,
apply pnat.mul_le_mul_right
end
theorem inv_mul {s : seq} (Hs : regular s) (Hsep : sep s zero) : smul (s_inv Hs) s ≡ one :=
begin
apply equiv.trans,
rotate 3,
apply s_mul_comm,
apply mul_inv,
repeat (assumption | apply reg_mul_reg | apply reg_inv_reg | apply zero_is_reg)
end
theorem sep_of_equiv_sep {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t)
(Hsep : sep s zero) : sep t zero :=
begin
apply or.elim Hsep,
intro Hslt,
apply or.inl,
rewrite ↑s_lt at *,
apply pos_of_pos_equiv,
rotate 2,
apply Hslt,
rotate_right 1,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply neg_well_defined,
apply Heq,
intro Hslt,
apply or.inr,
rewrite ↑s_lt at *,
apply pos_of_pos_equiv,
rotate 2,
apply Hslt,
rotate_right 1,
apply add_well_defined,
rotate 5,
apply equiv.refl,
repeat (assumption | apply reg_neg_reg | apply reg_add_reg | apply zero_is_reg)
end
theorem inv_unique {s t : seq} (Hs : regular s) (Ht : regular t) (Hsep : sep s zero)
(Heq : smul s t ≡ one) : s_inv Hs ≡ t :=
begin
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_mul_one,
rotate 1,
apply equiv.trans,
rotate 3,
apply mul_well_defined,
rotate 4,
apply equiv.refl,
apply equiv.symm,
apply Heq,
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_mul_assoc,
rotate 3,
apply equiv.trans,
rotate 3,
apply mul_well_defined,
rotate 4,
apply inv_mul,
rotate 1,
apply equiv.refl,
apply s_one_mul,
repeat (assumption | apply reg_inv_reg | apply reg_mul_reg | apply one_is_reg)
end
theorem inv_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_inv Hs ≡ s_inv Ht :=
if Hsep : sep s zero then
(begin
let Hsept := sep_of_equiv_sep Hs Ht Heq Hsep,
have Hm : smul t (s_inv Hs) ≡ smul s (s_inv Hs), begin
apply mul_well_defined,
repeat (assumption | apply reg_inv_reg),
apply equiv.symm s t Heq,
apply equiv.refl
end,
apply equiv.symm,
apply inv_unique,
rotate 2,
apply equiv.trans,
rotate 3,
apply Hm,
apply mul_inv,
repeat (assumption | apply reg_inv_reg | apply reg_mul_reg),
apply one_is_reg
end)
else
(have H : s_inv Hs = zero, from funext (λ n, dif_neg Hsep),
have Hsept : ¬ sep t zero, from
assume H', Hsep (sep_of_equiv_sep Ht Hs (equiv.symm _ _ Heq) H'),
have H' : s_inv Ht = zero, from funext (λ n, dif_neg Hsept),
H'⁻¹ ▸ (H⁻¹ ▸ equiv.refl zero))
theorem s_neg_neg {s : seq} : sneg (sneg s) ≡ s :=
begin
rewrite [↑equiv, ↑sneg],
intro n,
rewrite [neg_neg, sub_self, abs_zero],
apply add_invs_nonneg
end
theorem s_neg_sub {s t : seq} (Hs : regular s) (Ht : regular t) :
sneg (sadd s (sneg t)) ≡ sadd t (sneg s) :=
begin
apply equiv.trans,
rotate 3,
apply s_neg_add_eq_s_add_neg,
apply equiv.trans,
rotate 3,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply s_neg_neg,
apply s_add_comm,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_total {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t s_le t s :=
if H : s_le s t then or.inl H else or.inr begin
rewrite [↑s_le at *],
have H' : ∃ n : +, -n⁻¹ > sadd t (sneg s) n, begin
apply by_contradiction,
intro Hex,
have Hex' : ∀ n : +, -n⁻¹ ≤ sadd t (sneg s) n, begin
intro m,
apply by_contradiction,
intro Hm,
let Hm' := rat.lt_of_not_ge Hm,
let Hex'' := exists.intro m Hm',
apply Hex Hex''
end,
apply H Hex'
end,
eapply exists.elim H',
intro m Hm,
let Hm' := neg_lt_neg Hm,
rewrite neg_neg at Hm',
apply s_nonneg_of_pos,
rotate 1,
apply pos_of_pos_equiv,
rotate 1,
apply s_neg_sub,
rotate 2,
rewrite [↑pos, ↑sneg],
existsi m,
apply Hm',
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_of_not_lt {s t : seq} (Hle : ¬ s_lt s t) : s_le t s :=
begin
rewrite [↑s_le, ↑nonneg, ↑s_lt at Hle, ↑pos at Hle],
let Hle' := iff.mp forall_iff_not_exists Hle,
intro n,
let Hn := neg_le_neg (rat.le_of_not_gt (Hle' n)),
rewrite [↑sadd, ↑sneg, add_neg_eq_neg_add_rev],
apply Hn
end
theorem sep_of_nequiv {s t : seq} (Hs : regular s) (Ht : regular t) (Hneq : ¬ equiv s t) :
sep s t :=
begin
rewrite ↑sep,
apply by_contradiction,
intro Hnor,
let Hand := iff.mp !not_or_iff_not_and_not Hnor,
let Hle1 := s_le_of_not_lt (and.left Hand),
let Hle2 := s_le_of_not_lt (and.right Hand),
apply Hneq (equiv_of_le_of_ge Hs Ht Hle2 Hle1)
end
theorem s_zero_inv_equiv_zero : s_inv zero_is_reg ≡ zero :=
by rewrite s_inv_zero; apply equiv.refl
theorem lt_or_equiv_of_le {s t : seq} (Hs : regular s) (Ht : regular t) (Hle : s_le s t) :
s_lt s t s ≡ t :=
if H : s ≡ t then or.inr H else
or.inl (lt_of_le_and_sep Hs Ht (and.intro Hle (sep_of_nequiv Hs Ht H)))
theorem s_le_of_equiv_le_left {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Heq : s ≡ t) (Hle : s_le s u) : s_le t u :=
begin
rewrite ↑s_le at *,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply neg_well_defined,
apply Heq,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_of_equiv_le_right {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Heq : t ≡ u) (Hle : s_le s t) : s_le s u :=
begin
rewrite ↑s_le at *,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply Heq,
apply equiv.refl,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
-----------------------------
noncomputable definition r_inv (s : reg_seq) : reg_seq := reg_seq.mk (s_inv (reg_seq.is_reg s))
(if H : sep (reg_seq.sq s) zero then reg_inv_reg (reg_seq.is_reg s) H else
have Hz : s_inv (reg_seq.is_reg s) = zero, from funext (λ n, dif_neg H), Hz⁻¹ ▸ zero_is_reg)
theorem r_inv_zero : requiv (r_inv r_zero) r_zero :=
s_zero_inv_equiv_zero
theorem r_inv_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_inv s) (r_inv t) :=
inv_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
theorem r_le_total (s t : reg_seq) : r_le s t r_le t s :=
s_le_total (reg_seq.is_reg s) (reg_seq.is_reg t)
theorem r_mul_inv (s : reg_seq) (Hsep : r_sep s r_zero) : requiv (s * (r_inv s)) r_one :=
mul_inv (reg_seq.is_reg s) Hsep
theorem r_sep_of_nequiv (s t : reg_seq) (Hneq : ¬ requiv s t) : r_sep s t :=
sep_of_nequiv (reg_seq.is_reg s) (reg_seq.is_reg t) Hneq
theorem r_lt_or_equiv_of_le (s t : reg_seq) (Hle : r_le s t) : r_lt s t requiv s t :=
lt_or_equiv_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) Hle
theorem r_le_of_equiv_le_left {s t u : reg_seq} (Heq : requiv s t) (Hle : r_le s u) : r_le t u :=
s_le_of_equiv_le_left (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle
theorem r_le_of_equiv_le_right {s t u : reg_seq} (Heq : requiv t u) (Hle : r_le s t) : r_le s u :=
s_le_of_equiv_le_right (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle
definition r_abs (s : reg_seq) : reg_seq :=
reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s))
theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) :=
abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
end rat_seq
namespace real
open [classes] rat_seq
noncomputable definition inv (x : ) : := quot.lift_on x (λ a, quot.mk (rat_seq.r_inv a))
(λ a b H, quot.sound (rat_seq.r_inv_well_defined H))
postfix [priority real.prio] `⁻¹` := inv
theorem le_total (x y : ) : x ≤ y y ≤ x :=
quot.induction_on₂ x y (λ s t, rat_seq.r_le_total s t)
theorem mul_inv' (x : ) : x ≢ 0 → x * x⁻¹ = 1 :=
quot.induction_on x (λ s H, quot.sound (rat_seq.r_mul_inv s H))
theorem inv_mul' (x : ) : x ≢ 0 → x⁻¹ * x = 1 :=
by rewrite real.mul_comm; apply mul_inv'
theorem neq_of_sep {x y : } (H : x ≢ y) : ¬ x = y :=
assume Heq, !not_sep_self (Heq ▸ H)
theorem sep_of_neq {x y : } : ¬ x = y → x ≢ y :=
quot.induction_on₂ x y (λ s t H, rat_seq.r_sep_of_nequiv s t (assume Heq, H (quot.sound Heq)))
theorem sep_is_neq (x y : ) : (x ≢ y) = (¬ x = y) :=
propext (iff.intro neq_of_sep sep_of_neq)
theorem mul_inv (x : ) : x ≠ 0 → x * x⁻¹ = 1 := !sep_is_neq ▸ !mul_inv'
theorem inv_mul (x : ) : x ≠ 0 → x⁻¹ * x = 1 := !sep_is_neq ▸ !inv_mul'
theorem inv_zero : (0 : )⁻¹ = 0 := quot.sound (rat_seq.r_inv_zero)
theorem lt_or_eq_of_le (x y : ) : x ≤ y → x < y x = y :=
quot.induction_on₂ x y (λ s t H, or.elim (rat_seq.r_lt_or_equiv_of_le s t H)
(assume H1, or.inl H1)
(assume H2, or.inr (quot.sound H2)))
theorem le_iff_lt_or_eq (x y : ) : x ≤ y ↔ x < y x = y :=
iff.intro (lt_or_eq_of_le x y) (le_of_lt_or_eq x y)
noncomputable definition dec_lt : decidable_rel lt :=
begin
rewrite ↑decidable_rel,
intros,
apply prop_decidable
end
section migrate_algebra
open [classes] algebra
protected noncomputable definition discrete_linear_ordered_field [reducible] :
algebra.discrete_linear_ordered_field :=
⦃ algebra.discrete_linear_ordered_field, real.comm_ring, real.ordered_ring,
le_total := le_total,
mul_inv_cancel := mul_inv,
inv_mul_cancel := inv_mul,
zero_lt_one := zero_lt_one,
inv_zero := inv_zero,
le_iff_lt_or_eq := le_iff_lt_or_eq,
decidable_lt := dec_lt
local attribute real.discrete_linear_ordered_field [trans-instance]
local attribute real.comm_ring [instance]
local attribute real.ordered_ring [instance]
noncomputable definition abs (n : ) : := algebra.abs n
noncomputable definition sign (n : ) : := algebra.sign n
noncomputable definition max (a b : ) : := algebra.max a b
noncomputable definition min (a b : ) : := algebra.min a b
noncomputable definition divide (a b : ): := algebra.divide a b
migrate from algebra with real
replacing has_le.ge → ge, has_lt.gt → gt, sub → sub, abs → abs, sign → sign, dvd → dvd,
divide → divide, max → max, min → min, pow → pow, nmul → nmul, imul → imul
end migrate_algebra
infix / := divide
end real