Spectral/algebra/graded.hlean

544 lines
22 KiB
Text
Raw Normal View History

2017-03-30 22:33:33 +00:00
/- Graded (left-) R-modules for a ring R. -/
2016-03-24 18:24:47 +00:00
2017-03-30 19:02:24 +00:00
-- Author: Floris van Doorn
2017-04-25 22:26:59 +00:00
import .left_module .direct_sum .submodule --..heq
2017-03-30 19:02:24 +00:00
open is_trunc algebra eq left_module pointed function equiv is_equiv prod group sigma nat
-- move
lemma le_sub_of_add_le {n m k : } (h : n + m ≤ k) : n ≤ k - m :=
begin
induction h with k h IH,
{ exact le_of_eq !nat.add_sub_cancel⁻¹ },
{ exact le.trans IH (nat.sub_le_sub_right !self_le_succ _) }
end
lemma iterate_sub {A : Type} (f : A ≃ A) {n m : } (h : n ≥ m) (a : A) :
iterate f (n - m) a = iterate f n (iterate f⁻¹ m a) :=
begin
revert n h, induction m with m p: intro n h,
{ reflexivity },
{ cases n with n, exfalso, apply not_succ_le_zero _ h,
rewrite [succ_sub_succ], refine p n (le_of_succ_le_succ h) ⬝ _,
refine ap (_^[n]) _ ⬝ !iterate_succ⁻¹, exact !to_right_inv⁻¹ }
end
definition iterate_commute {A : Type} {f g : A → A} (n : ) (h : f ∘ g ~ g ∘ f) :
iterate f n ∘ g ~ g ∘ iterate f n :=
by induction n with n IH; reflexivity; exact λx, ap f (IH x) ⬝ !h
-- definition iterate_left_inv {A : Type} (f : A ≃ A) (n : ) : Πa, f⁻¹ᵉ^[n] (f^[n] a) = a :=
-- begin
-- induction n with n p: intro a,
-- reflexivity,
-- exact ap f⁻¹ᵉ (ap (f⁻¹ᵉ^[n]) (iterate_succ f n a) ⬝ p (f a)) ⬝ left_inv f a,
-- end
definition iterate_equiv {A : Type} (f : A ≃ A) (n : ) : A ≃ A :=
equiv.mk (iterate f n)
(by induction n with n IH; apply is_equiv_id; exact is_equiv_compose f (iterate f n))
definition iterate_inv {A : Type} (f : A ≃ A) (n : ) :
(iterate_equiv f n)⁻¹ ~ iterate f⁻¹ n :=
begin
induction n with n p: intro a,
reflexivity,
exact p (f⁻¹ a) ⬝ !iterate_succ⁻¹
end
2017-03-30 19:02:24 +00:00
definition iterate_left_inv {A : Type} (f : A ≃ A) (n : ) (a : A) : f⁻¹ᵉ^[n] (f^[n] a) = a :=
(iterate_inv f n (f^[n] a))⁻¹ ⬝ to_left_inv (iterate_equiv f n) a
definition iterate_right_inv {A : Type} (f : A ≃ A) (n : ) (a : A) : f^[n] (f⁻¹ᵉ^[n] a) = a :=
ap (f^[n]) (iterate_inv f n a)⁻¹ ⬝ to_right_inv (iterate_equiv f n) a
2017-03-30 19:02:24 +00:00
namespace left_module
definition graded [reducible] (str : Type) (I : Type) : Type := I → str
definition graded_module [reducible] (R : Ring) : Type → Type := graded (LeftModule R)
2017-03-30 19:02:24 +00:00
2017-04-24 17:33:48 +00:00
variables {R : Ring} {I : Set} {M M₁ M₂ M₃ : graded_module R I}
2017-03-30 19:02:24 +00:00
/-
morphisms between graded modules.
The definition is unconventional in two ways:
(1) The degree is determined by an endofunction instead of a element of I (and in this case we
don't need to assume that I is a group). The "standard" degree i corresponds to the endofunction
which is addition with i on the right. However, this is more flexible. For example, the
composition of two graded module homomorphisms φ₂ and φ₁ with degrees i₂ and i₁ has type
M₁ i → M₂ ((i + i₁) + i₂).
However, a homomorphism with degree i₁ + i₂ must have type
M₁ i → M₂ (i + (i₁ + i₂)),
which means that we need to insert a transport. With endofunctions this is not a problem:
λi, (i + i₁) + i₂
is a perfectly fine degree of a map
(2) Since we cannot eliminate all possible transports, we don't define a homomorphism as function
M₁ i →lm M₂ (i + deg f) or M₁ i →lm M₂ (deg f i)
but as a function taking a path as argument. Specifically, for every path
deg f i = j
we get a function M₁ i → M₂ j.
2017-04-24 17:33:48 +00:00
(3) Note: we do assume that I is a set. This is not strictly necessary, but it simplifies things
-/
definition graded_hom_of_deg (d : I ≃ I) (M₁ M₂ : graded_module R I) : Type :=
Π⦃i j : I⦄ (p : d i = j), M₁ i →lm M₂ j
definition gmd_constant [constructor] (d : I ≃ I) (M₁ M₂ : graded_module R I) : graded_hom_of_deg d M₁ M₂ :=
λi j p, lm_constant (M₁ i) (M₂ j)
definition gmd0 [constructor] {d : I ≃ I} {M₁ M₂ : graded_module R I} : graded_hom_of_deg d M₁ M₂ :=
gmd_constant d M₁ M₂
structure graded_hom (M₁ M₂ : graded_module R I) : Type :=
mk' :: (d : I ≃ I)
(fn' : graded_hom_of_deg d M₁ M₂)
2017-03-30 19:02:24 +00:00
notation M₁ ` →gm ` M₂ := graded_hom M₁ M₂
abbreviation deg [unfold 5] := @graded_hom.d
2017-04-24 17:33:48 +00:00
postfix ` ↘`:max := graded_hom.fn' -- there is probably a better character for this? Maybe ↷?
2017-03-30 19:02:24 +00:00
definition graded_hom_fn [reducible] [unfold 5] [coercion] (f : M₁ →gm M₂) (i : I) : M₁ i →lm M₂ (deg f i) :=
f ↘ idp
2017-04-24 17:33:48 +00:00
definition graded_hom_fn_out [reducible] [unfold 5] (f : M₁ →gm M₂) (i : I) : M₁ ((deg f)⁻¹ i) →lm M₂ i :=
f ↘ (to_right_inv (deg f) i)
2017-04-24 17:33:48 +00:00
infix ` ← `:101 := graded_hom_fn_out -- todo: change notation
definition graded_hom.mk [constructor] (d : I ≃ I)
(fn : Πi, M₁ i →lm M₂ (d i)) : M₁ →gm M₂ :=
graded_hom.mk' d (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn i)
definition graded_hom.mk_out [constructor] (d : I ≃ I)
(fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) : M₁ →gm M₂ :=
graded_hom.mk' d (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p)))
definition graded_hom.mk_out' [constructor] (d : I ≃ I)
(fn : Πi, M₁ (d i) →lm M₂ i) : M₁ →gm M₂ :=
graded_hom.mk' d⁻¹ᵉ (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p)))
definition graded_hom.mk_out_in [constructor] (d₁ : I ≃ I) (d₂ : I ≃ I)
(fn : Πi, M₁ (d₁ i) →lm M₂ (d₂ i)) : M₁ →gm M₂ :=
graded_hom.mk' (d₁⁻¹ᵉ ⬝e d₂) (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn (d₁⁻¹ᵉ i) ∘lm
homomorphism_of_eq (ap M₁ (to_right_inv d₁ i)⁻¹))
definition graded_hom_eq_transport (f : M₁ →gm M₂) {i j : I} (p : deg f i = j) (m : M₁ i) :
f ↘ p m = transport M₂ p (f i m) :=
by induction p; reflexivity
definition graded_hom_mk_refl (d : I ≃ I)
(fn : Πi, M₁ i →lm M₂ (d i)) {i : I} (m : M₁ i) : graded_hom.mk d fn i m = fn i m :=
by reflexivity
lemma graded_hom_mk_out'_left_inv (d : I ≃ I)
(fn : Πi, M₁ (d i) →lm M₂ i) {i : I} (m : M₁ (d i)) :
graded_hom.mk_out' d fn ↘ (left_inv d i) m = fn i m :=
begin
unfold [graded_hom.mk_out'],
apply ap (λx, fn i (cast x m)),
refine !ap_compose⁻¹ ⬝ ap02 _ _,
apply is_set.elim --we can also prove this in arbitrary types
end
lemma graded_hom_mk_out_right_inv (d : I ≃ I)
(fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) {i : I} (m : M₁ (d⁻¹ i)) :
graded_hom.mk_out d fn ↘ (right_inv d i) m = fn i m :=
begin
rexact graded_hom_mk_out'_left_inv d⁻¹ᵉ fn m
end
definition graded_hom_eq_zero {f : M₁ →gm M₂} {i j k : I} {q : deg f i = j} {p : deg f i = k}
(m : M₁ i) (r : f ↘ q m = 0) : f ↘ p m = 0 :=
have f ↘ p m = transport M₂ (q⁻¹ ⬝ p) (f ↘ q m), begin induction p, induction q, reflexivity end,
this ⬝ ap (transport M₂ (q⁻¹ ⬝ p)) r ⬝ tr_eq_of_pathover (apd (λi, 0) (q⁻¹ ⬝ p))
2017-04-24 17:33:48 +00:00
variables {f' : M₂ →gm M₃} {f g h : M₁ →gm M₂}
definition graded_hom_compose [constructor] (f' : M₂ →gm M₃) (f : M₁ →gm M₂) : M₁ →gm M₃ :=
graded_hom.mk (deg f ⬝e deg f') (λi, f' (deg f i) ∘lm f i)
infixr ` ∘gm `:75 := graded_hom_compose
definition graded_hom_compose_fn (f' : M₂ →gm M₃) (f : M₁ →gm M₂) (i : I) (m : M₁ i) :
(f' ∘gm f) i m = f' (deg f i) (f i m) :=
proof idp qed
2017-03-30 19:02:24 +00:00
variable (M)
definition graded_hom_id [constructor] [refl] : M →gm M :=
graded_hom.mk erfl (λi, lmid)
variable {M}
abbreviation gmid [constructor] := graded_hom_id M
definition gm_constant [constructor] (M₁ M₂ : graded_module R I) (d : I ≃ I) : M₁ →gm M₂ :=
graded_hom.mk' d (gmd_constant d M₁ M₂)
2017-03-30 19:02:24 +00:00
definition is_surjective_graded_hom_compose ⦃x z⦄
(f' : M₂ →gm M₃) (f : M₁ →gm M₂) (p : deg f' (deg f x) = z)
(H' : Π⦃y⦄ (q : deg f' y = z), is_surjective (f' ↘ q))
(H : Π⦃y⦄ (q : deg f x = y), is_surjective (f ↘ q)) : is_surjective ((f' ∘gm f) ↘ p) :=
begin
induction p,
apply is_surjective_compose (f' (deg f x)) (f x),
apply H', apply H
end
structure graded_iso (M₁ M₂ : graded_module R I) : Type :=
mk' :: (to_hom : M₁ →gm M₂)
(is_equiv_to_hom : Π⦃i j⦄ (p : deg to_hom i = j), is_equiv (to_hom ↘ p))
2017-03-30 19:02:24 +00:00
infix ` ≃gm `:25 := graded_iso
attribute graded_iso.to_hom [coercion]
attribute graded_iso._trans_of_to_hom [unfold 5]
2017-03-30 19:02:24 +00:00
definition is_equiv_graded_iso [instance] [priority 1010] (φ : M₁ ≃gm M₂) (i : I) :
is_equiv (φ i) :=
graded_iso.is_equiv_to_hom φ idp
definition isomorphism_of_graded_iso' [constructor] (φ : M₁ ≃gm M₂) {i j : I} (p : deg φ i = j) :
M₁ i ≃lm M₂ j :=
isomorphism.mk (φ ↘ p) !graded_iso.is_equiv_to_hom
definition isomorphism_of_graded_iso [constructor] (φ : M₁ ≃gm M₂) (i : I) :
M₁ i ≃lm M₂ (deg φ i) :=
isomorphism.mk (φ i) _
2017-04-24 17:33:48 +00:00
definition isomorphism_of_graded_iso_out [constructor] (φ : M₁ ≃gm M₂) (i : I) :
M₁ ((deg φ)⁻¹ i) ≃lm M₂ i :=
isomorphism_of_graded_iso' φ !to_right_inv
protected definition graded_iso.mk [constructor] (d : I ≃ I) (φ : Πi, M₁ i ≃lm M₂ (d i)) :
M₁ ≃gm M₂ :=
begin
apply graded_iso.mk' (graded_hom.mk d φ),
intro i j p, induction p,
exact to_is_equiv (equiv_of_isomorphism (φ i)),
end
2017-04-24 17:33:48 +00:00
protected definition graded_iso.mk_out [constructor] (d : I ≃ I) (φ : Πi, M₁ (d⁻¹ i) ≃lm M₂ i) :
M₁ ≃gm M₂ :=
begin
2017-04-24 17:33:48 +00:00
apply graded_iso.mk' (graded_hom.mk_out d φ),
intro i j p, esimp,
exact @is_equiv_compose _ _ _ _ _ !is_equiv_cast _,
end
definition graded_iso_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂)
: M₁ ≃gm M₂ :=
graded_iso.mk erfl (λi, isomorphism_of_eq (p i))
-- definition to_gminv [constructor] (φ : M₁ ≃gm M₂) : M₂ →gm M₁ :=
2017-04-24 17:33:48 +00:00
-- graded_hom.mk_out (deg φ)⁻¹ᵉ
-- abstract begin
-- intro i, apply isomorphism.to_hom, symmetry,
-- apply isomorphism_of_graded_iso φ
-- end end
variable (M)
definition graded_iso.refl [refl] [constructor] : M ≃gm M :=
graded_iso.mk equiv.rfl (λi, isomorphism.rfl)
variable {M}
definition graded_iso.rfl [refl] [constructor] : M ≃gm M := graded_iso.refl M
definition graded_iso.symm [symm] [constructor] (φ : M₁ ≃gm M₂) : M₂ ≃gm M₁ :=
2017-04-24 17:33:48 +00:00
graded_iso.mk_out (deg φ)⁻¹ᵉ (λi, (isomorphism_of_graded_iso φ i)⁻¹ˡᵐ)
definition graded_iso.trans [trans] [constructor] (φ : M₁ ≃gm M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ :=
graded_iso.mk (deg φ ⬝e deg ψ)
(λi, isomorphism_of_graded_iso φ i ⬝lm isomorphism_of_graded_iso ψ (deg φ i))
definition graded_iso.eq_trans [trans] [constructor]
2017-04-24 17:33:48 +00:00
{M₁ M₂ M₃ : graded_module R I} (φ : M₁ ~ M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ :=
proof graded_iso.trans (graded_iso_of_eq φ) ψ qed
definition graded_iso.trans_eq [trans] [constructor]
2017-04-24 17:33:48 +00:00
{M₁ M₂ M₃ : graded_module R I} (φ : M₁ ≃gm M₂) (ψ : M₂ ~ M₃) : M₁ ≃gm M₃ :=
graded_iso.trans φ (graded_iso_of_eq ψ)
2017-04-24 17:33:48 +00:00
postfix `⁻¹ᵉᵍᵐ`:(max + 1) := graded_iso.symm
infixl ` ⬝egm `:75 := graded_iso.trans
infixl ` ⬝egmp `:75 := graded_iso.trans_eq
infixl ` ⬝epgm `:75 := graded_iso.eq_trans
2017-04-24 17:33:48 +00:00
definition graded_hom_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂) : M₁ →gm M₂ :=
proof graded_iso_of_eq p qed
definition fooff {I : Set} (P : I → Type) {i j : I} (M : P i) (N : P j) := unit
notation M ` ==[`:50 P:0 `] `:0 N:50 := fooff P M N
2017-04-25 22:26:59 +00:00
2017-04-24 17:33:48 +00:00
definition graded_homotopy (f g : M₁ →gm M₂) : Type :=
Π⦃i j k⦄ (p : deg f i = j) (q : deg g i = k) (m : M₁ i), f ↘ p m ==[λi, M₂ i] g ↘ q m
-- mk' :: (hd : deg f ~ deg g)
-- (hfn : Π⦃i j : I⦄ (pf : deg f i = j) (pg : deg g i = j), f ↘ pf ~ g ↘ pg)
infix ` ~gm `:50 := graded_homotopy
2017-04-24 17:33:48 +00:00
-- definition graded_homotopy.mk2 (hd : deg f ~ deg g) (hfn : Πi m, f i m =[hd i] g i m) : f ~gm g :=
-- graded_homotopy.mk' hd
-- begin
-- intro i j pf pg m, induction (is_set.elim (hd i ⬝ pg) pf), induction pg, esimp,
-- exact graded_hom_eq_transport f (hd i) m ⬝ tr_eq_of_pathover (hfn i m),
-- end
2017-04-24 17:33:48 +00:00
definition graded_homotopy.mk (h : Πi m, f i m ==[λi, M₂ i] g i m) : f ~gm g :=
begin
2017-04-25 22:26:59 +00:00
intros i j k p q m, induction q, induction p, constructor --exact h i m
2017-04-24 17:33:48 +00:00
end
2017-04-24 17:33:48 +00:00
-- definition graded_hom_compose_out {d₁ d₂ : I ≃ I} (f₂ : Πi, M₂ i →lm M₃ (d₂ i))
-- (f₁ : Πi, M₁ (d₁⁻¹ i) →lm M₂ i) : graded_hom.mk d₂ f₂ ∘gm graded_hom.mk_out d₁ f₁ ~gm
-- graded_hom.mk_out_in d₁⁻¹ᵉ d₂ _ :=
-- _
2017-04-24 17:33:48 +00:00
definition graded_hom_out_in_compose_out {d₁ d₂ d₃ : I ≃ I} (f₂ : Πi, M₂ (d₂ i) →lm M₃ (d₃ i))
(f₁ : Πi, M₁ (d₁⁻¹ i) →lm M₂ i) : graded_hom.mk_out_in d₂ d₃ f₂ ∘gm graded_hom.mk_out d₁ f₁ ~gm
graded_hom.mk_out_in (d₂ ⬝e d₁⁻¹ᵉ) d₃ (λi, f₂ i ∘lm (f₁ (d₂ i))) :=
begin
apply graded_homotopy.mk, intro i m, exact sorry
end
2017-04-24 17:33:48 +00:00
definition graded_hom_out_in_rfl {d₁ d₂ : I ≃ I} (f : Πi, M₁ i →lm M₂ (d₂ i))
(p : Πi, d₁ i = i) :
graded_hom.mk_out_in d₁ d₂ (λi, sorry) ~gm graded_hom.mk d₂ f :=
begin
apply graded_homotopy.mk, intro i m, exact sorry
end
2017-04-24 17:33:48 +00:00
definition graded_homotopy.trans (h₁ : f ~gm g) (h₂ : g ~gm h) : f ~gm h :=
begin
2017-04-24 17:33:48 +00:00
exact sorry
end
2017-04-24 17:33:48 +00:00
-- postfix `⁻¹ᵍᵐ`:(max + 1) := graded_iso.symm
infixl ` ⬝gm `:75 := graded_homotopy.trans
-- infixl ` ⬝gmp `:75 := graded_iso.trans_eq
-- infixl ` ⬝pgm `:75 := graded_iso.eq_trans
-- definition graded_homotopy_of_deg (d : I ≃ I) (f g : graded_hom_of_deg d M₁ M₂) : Type :=
-- Π⦃i j : I⦄ (p : d i = j), f p ~ g p
-- notation f ` ~[`:50 d:0 `] `:0 g:50 := graded_homotopy_of_deg d f g
-- variables {d : I ≃ I} {f₁ f₂ : graded_hom_of_deg d M₁ M₂}
-- definition graded_homotopy_of_deg.mk [constructor] (h : Πi, f₁ (idpath (d i)) ~ f₂ (idpath (d i))) :
-- f₁ ~[d] f₂ :=
-- begin
-- intro i j p, induction p, exact h i
-- end
-- definition graded_homotopy.mk_out [constructor] {M₁ M₂ : graded_module R I} (d : I ≃ I)
-- (fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) : M₁ →gm M₂ :=
-- graded_hom.mk' d (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p)))
-- definition is_gconstant (f : M₁ →gm M₂) : Type :=
-- f↘ ~[deg f] gmd0
definition compose_constant (f' : M₂ →gm M₃) (f : M₁ →gm M₂) : Type :=
Π⦃i j k : I⦄ (p : deg f i = j) (q : deg f' j = k) (m : M₁ i), f' ↘ q (f ↘ p m) = 0
definition compose_constant.mk (h : Πi m, f' (deg f i) (f i m) = 0) : compose_constant f' f :=
by intros; induction p; induction q; exact h i m
definition compose_constant.elim (h : compose_constant f' f) (i : I) (m : M₁ i) : f' (deg f i) (f i m) = 0 :=
h idp idp m
definition is_gconstant (f : M₁ →gm M₂) : Type :=
Π⦃i j : I⦄ (p : deg f i = j) (m : M₁ i), f ↘ p m = 0
definition is_gconstant.mk (h : Πi m, f i m = 0) : is_gconstant f :=
by intros; induction p; exact h i m
definition is_gconstant.elim (h : is_gconstant f) (i : I) (m : M₁ i) : f i m = 0 :=
h idp m
/- direct sum of graded R-modules -/
variables {J : Set} (N : graded_module R J)
definition dirsum' : AddAbGroup :=
group.dirsum (λj, AddAbGroup_of_LeftModule (N j))
variable {N}
2017-04-13 18:54:48 +00:00
definition dirsum_smul [constructor] (r : R) : dirsum' N →a dirsum' N :=
dirsum_functor (λi, smul_homomorphism (N i) r)
definition dirsum_smul_right_distrib (r s : R) (n : dirsum' N) :
dirsum_smul (r + s) n = dirsum_smul r n + dirsum_smul s n :=
begin
refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_add⁻¹,
intro i ni, exact to_smul_right_distrib r s ni
end
2017-04-13 18:54:48 +00:00
definition dirsum_mul_smul' (r s : R) (n : dirsum' N) :
dirsum_smul (r * s) n = (dirsum_smul r ∘a dirsum_smul s) n :=
begin
2017-04-13 18:54:48 +00:00
refine dirsum_functor_homotopy _ n ⬝ (dirsum_functor_compose _ _ n)⁻¹ᵖ,
intro i ni, exact to_mul_smul r s ni
end
2017-04-13 18:54:48 +00:00
definition dirsum_mul_smul (r s : R) (n : dirsum' N) :
dirsum_smul (r * s) n = dirsum_smul r (dirsum_smul s n) :=
proof dirsum_mul_smul' r s n qed
definition dirsum_one_smul (n : dirsum' N) : dirsum_smul 1 n = n :=
begin
refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_gid,
intro i ni, exact to_one_smul ni
end
definition dirsum : LeftModule R :=
LeftModule_of_AddAbGroup (dirsum' N) (λr n, dirsum_smul r n)
(λr, homomorphism.addstruct (dirsum_smul r))
dirsum_smul_right_distrib
dirsum_mul_smul
dirsum_one_smul
/- graded variants of left-module constructions -/
definition graded_submodule [constructor] (S : Πi, submodule_rel (M i)) : graded_module R I :=
λi, submodule (S i)
definition graded_submodule_incl [constructor] (S : Πi, submodule_rel (M i)) :
graded_submodule S →gm M :=
graded_hom.mk erfl (λi, submodule_incl (S i))
2017-04-25 22:26:59 +00:00
definition graded_hom_lift [constructor] {S : Πi, submodule_rel (M₂ i)}
(φ : M₁ →gm M₂)
(h : Π(i : I) (m : M₁ i), S (deg φ i) (φ i m)) : M₁ →gm graded_submodule S :=
graded_hom.mk (deg φ) (λi, hom_lift (φ i) (h i))
definition graded_image (f : M₁ →gm M₂) : graded_module R I :=
2017-04-24 17:33:48 +00:00
λi, image_module (f ← i)
2017-04-20 18:42:29 +00:00
definition graded_image_lift [constructor] (f : M₁ →gm M₂) : M₁ →gm graded_image f :=
2017-04-24 17:33:48 +00:00
graded_hom.mk_out (deg f) (λi, image_lift (f ← i))
definition graded_image_elim [constructor] {f : M₁ →gm M₂} (g : M₁ →gm M₃)
(h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
graded_image f →gm M₃ :=
begin
apply graded_hom.mk_out_in (deg f) (deg g),
intro i,
apply image_elim (g ↘ (ap (deg g) (to_left_inv (deg f) i))),
intro m p,
refine graded_hom_eq_zero m (h _),
exact graded_hom_eq_zero m p
end
definition is_surjective_graded_image_lift ⦃x y⦄ (f : M₁ →gm M₂)
(p : deg f x = y) : is_surjective (graded_image_lift f ↘ p) :=
begin
exact sorry
end
2017-04-24 17:33:48 +00:00
definition graded_image' (f : M₁ →gm M₂) : graded_module R I :=
λi, image_module (f i)
definition graded_image'_lift [constructor] (f : M₁ →gm M₂) : M₁ →gm graded_image' f :=
graded_hom.mk erfl (λi, image_lift (f i))
definition graded_image'_elim [constructor] {f : M₁ →gm M₂} (g : M₁ →gm M₃)
(h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
graded_image' f →gm M₃ :=
begin
apply graded_hom.mk (deg g),
intro i,
apply image_elim (g i),
intro m p, exact h p
end
theorem graded_image'_elim_compute {f : M₁ →gm M₂} {g : M₁ →gm M₃}
(h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
graded_image'_elim g h ∘gm graded_image'_lift f ~gm g :=
begin
apply graded_homotopy.mk,
2017-04-25 22:26:59 +00:00
intro i m, exact sorry --reflexivity
2017-04-24 17:33:48 +00:00
end
theorem graded_image_elim_compute {f : M₁ →gm M₂} {g : M₁ →gm M₃}
(h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
graded_image_elim g h ∘gm graded_image_lift f ~gm g :=
begin
refine _ ⬝gm graded_image'_elim_compute h,
esimp, exact sorry
-- refine graded_hom_out_in_compose_out _ _ ⬝gm _, exact sorry
-- -- apply graded_homotopy.mk,
-- -- intro i m,
end
variables {α β : I ≃ I}
definition gen_image (f : M₁ →gm M₂) (p : Πi, deg f (α i) = β i) : graded_module R I :=
λi, image_module (f ↘ (p i))
definition gen_image_lift [constructor] (f : M₁ →gm M₂) (p : Πi, deg f (α i) = β i) : M₁ →gm gen_image f p :=
graded_hom.mk_out α⁻¹ᵉ (λi, image_lift (f ↘ (p i)))
definition gen_image_elim [constructor] {f : M₁ →gm M₂} (p : Πi, deg f (α i) = β i) (g : M₁ →gm M₃)
(h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
gen_image f p →gm M₃ :=
begin
apply graded_hom.mk_out_in α⁻¹ᵉ (deg g),
intro i,
apply image_elim (g ↘ (ap (deg g) (to_right_inv α i))),
intro m p,
refine graded_hom_eq_zero m (h _),
exact graded_hom_eq_zero m p
end
theorem gen_image_elim_compute {f : M₁ →gm M₂} {p : deg f ∘ α ~ β} {g : M₁ →gm M₃}
(h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
gen_image_elim p g h ∘gm gen_image_lift f p ~gm g :=
begin
-- induction β with β βe, esimp at *, induction p using homotopy.rec_on_idp,
assert q : β ⬝e (deg f)⁻¹ᵉ = α,
{ apply equiv_eq, intro i, apply inv_eq_of_eq, exact (p i)⁻¹ },
induction q,
-- unfold [gen_image_elim, gen_image_lift],
-- induction (is_prop.elim (λi, to_right_inv (deg f) (β i)) p),
-- apply graded_homotopy.mk,
-- intro i m, reflexivity
2017-04-25 22:26:59 +00:00
exact sorry
2017-04-24 17:33:48 +00:00
end
definition graded_kernel (f : M₁ →gm M₂) : graded_module R I :=
λi, kernel_module (f i)
definition graded_quotient (S : Πi, submodule_rel (M i)) : graded_module R I :=
λi, quotient_module (S i)
definition graded_quotient_map [constructor] (S : Πi, submodule_rel (M i)) :
M →gm graded_quotient S :=
graded_hom.mk erfl (λi, quotient_map (S i))
definition graded_homology (g : M₂ →gm M₃) (f : M₁ →gm M₂) : graded_module R I :=
2017-04-27 23:04:30 +00:00
λi, homology (g i) (f ← i)
2017-04-24 17:33:48 +00:00
definition graded_homology_intro [constructor] (g : M₂ →gm M₃) (f : M₁ →gm M₂) :
graded_kernel g →gm graded_homology g f :=
graded_quotient_map _
definition graded_homology_elim {g : M₂ →gm M₃} {f : M₁ →gm M₂} (h : M₂ →gm M)
(H : compose_constant h f) : graded_homology g f →gm M :=
graded_hom.mk (deg h) (λi, homology_elim (h i) (H _ _))
2017-04-20 18:42:29 +00:00
definition is_exact_gmod (f : M₁ →gm M₂) (f' : M₂ →gm M₃) : Type :=
Π⦃i j k⦄ (p : deg f i = j) (q : deg f' j = k), is_exact_mod (f ↘ p) (f' ↘ q)
2017-04-24 17:33:48 +00:00
definition is_exact_gmod.mk {f : M₁ →gm M₂} {f' : M₂ →gm M₃}
(h₁ : Π⦃i⦄ (m : M₁ i), f' (deg f i) (f i m) = 0)
(h₂ : Π⦃i⦄ (m : M₂ (deg f i)), f' (deg f i) m = 0 → image (f i) m) : is_exact_gmod f f' :=
begin intro i j k p q; induction p; induction q; split, apply h₁, apply h₂ end
definition gmod_im_in_ker (h : is_exact_gmod f f') : compose_constant f' f :=
λi j k p q, is_exact.im_in_ker (h p q)
2017-03-30 19:02:24 +00:00
-- definition is_exact_gmod_mk_mk_out' {d₁ d₂ : I ≃ I} (fn₁ : Πi, M₁ i →lm M₂ (d₁ i))
-- (fn₂ : Πi, M₂ (d₂ i) →lm M₃ i) (H : Πi, is_exact_mod (fn₁ i) _) : is_exact_gmod (graded_hom.mk d₁ fn₁) (graded_hom.mk_out' d₂ fn₂) :=
-- begin
2017-04-25 22:26:59 +00:00
-- end
2017-03-30 19:02:24 +00:00
end left_module