2016-09-17 00:23:05 +00:00
|
|
|
|
-- definitions, theorems and attributes which should be moved to files in the HoTT library
|
|
|
|
|
|
2016-11-14 19:44:29 +00:00
|
|
|
|
import homotopy.sphere2 homotopy.cofiber homotopy.wedge
|
2016-09-17 00:23:05 +00:00
|
|
|
|
|
|
|
|
|
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
2017-02-18 21:56:38 +00:00
|
|
|
|
is_trunc function sphere unit sum prod
|
2016-09-17 00:23:05 +00:00
|
|
|
|
|
2017-01-05 19:02:41 +00:00
|
|
|
|
attribute equiv_unit_of_is_contr [constructor]
|
|
|
|
|
attribute pwedge pushout.symm pushout.equiv pushout.is_equiv_functor [constructor]
|
2016-12-26 15:24:01 +00:00
|
|
|
|
attribute is_succ_add_right is_succ_add_left is_succ_bit0 [constructor]
|
2017-01-05 19:02:41 +00:00
|
|
|
|
attribute pushout.functor [unfold 16]
|
|
|
|
|
attribute pushout.transpose [unfold 6]
|
2017-01-18 22:19:00 +00:00
|
|
|
|
attribute ap_eq_apd10 [unfold 5]
|
|
|
|
|
attribute eq_equiv_eq_symm [constructor]
|
|
|
|
|
|
2017-02-18 21:56:38 +00:00
|
|
|
|
definition add_comm_right {A : Type} [add_comm_semigroup A] (n m k : A) : n + m + k = n + k + m :=
|
|
|
|
|
!add.assoc ⬝ ap (add n) !add.comm ⬝ !add.assoc⁻¹
|
|
|
|
|
|
|
|
|
|
namespace algebra
|
|
|
|
|
definition inf_group_loopn (n : ℕ) (A : Type*) [H : is_succ n] : inf_group (Ω[n] A) :=
|
|
|
|
|
by induction H; exact _
|
2017-02-20 21:23:57 +00:00
|
|
|
|
|
|
|
|
|
definition one_unique {A : Type} [group A] {a : A} (H : Πb, a * b = b) : a = 1 :=
|
|
|
|
|
!mul_one⁻¹ ⬝ H 1
|
2017-02-18 21:56:38 +00:00
|
|
|
|
end algebra
|
2016-12-26 15:24:01 +00:00
|
|
|
|
|
|
|
|
|
namespace eq
|
|
|
|
|
|
2017-03-02 03:58:50 +00:00
|
|
|
|
section -- squares
|
|
|
|
|
variables {A B : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A}
|
|
|
|
|
/-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
|
|
|
|
|
{p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
|
|
|
|
|
/-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
|
|
|
|
|
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
|
|
|
|
|
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
|
|
|
|
|
|
|
|
|
|
variables {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
|
|
|
|
|
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
|
|
|
|
|
|
|
|
|
|
definition natural_square_eq {A B : Type} {a a' : A} {f g : A → B} (p : f ~ g) (q : a = a')
|
|
|
|
|
: natural_square p q = square_of_pathover (apd p q) :=
|
|
|
|
|
idp
|
|
|
|
|
|
|
|
|
|
definition eq_of_square_hrfl_hconcat_eq {A : Type} {a a' : A} {p p' : a = a'} (q : p = p')
|
|
|
|
|
: eq_of_square (hrfl ⬝hp q⁻¹) = !idp_con ⬝ q :=
|
|
|
|
|
by induction q; induction p; reflexivity
|
|
|
|
|
|
|
|
|
|
definition aps_vrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
|
|
|
|
|
aps f (vrefl p) = vrefl (ap f p) :=
|
|
|
|
|
by induction p; reflexivity
|
|
|
|
|
|
|
|
|
|
definition aps_hrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
|
|
|
|
|
aps f (hrefl p) = hrefl (ap f p) :=
|
|
|
|
|
by induction p; reflexivity
|
|
|
|
|
|
|
|
|
|
definition natural_square_ap_fn {A B C : Type} {a a' : A} {g h : A → B} (f : B → C) (p : g ~ h) (q : a = a') :
|
|
|
|
|
natural_square (λa, ap f (p a)) q =
|
|
|
|
|
ap_compose f g q ⬝ph (aps f (natural_square p q) ⬝hp (ap_compose f h q)⁻¹) :=
|
|
|
|
|
begin
|
|
|
|
|
induction q, exact !aps_vrfl⁻¹
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition natural_square_refl {A B : Type} {a a' : A} (f : A → B) (q : a = a')
|
|
|
|
|
: natural_square (homotopy.refl f) q = hrfl :=
|
|
|
|
|
by induction q; reflexivity
|
|
|
|
|
|
|
|
|
|
definition aps_eq_hconcat {p₀₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
|
|
|
|
|
aps f (q ⬝ph s₁₁) = ap02 f q ⬝ph aps f s₁₁ :=
|
|
|
|
|
by induction q; reflexivity
|
|
|
|
|
|
|
|
|
|
definition aps_hconcat_eq {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁' = p₂₁) :
|
|
|
|
|
aps f (s₁₁ ⬝hp r⁻¹) = aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
|
|
|
|
|
by induction r; reflexivity
|
|
|
|
|
|
|
|
|
|
definition aps_hconcat_eq' {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p₂₁') :
|
|
|
|
|
aps f (s₁₁ ⬝hp r) = aps f s₁₁ ⬝hp ap02 f r :=
|
|
|
|
|
by induction r; reflexivity
|
|
|
|
|
|
|
|
|
|
definition aps_square_of_eq (f : A → B) (s : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) :
|
|
|
|
|
aps f (square_of_eq s) = square_of_eq ((ap_con f p₁₀ p₂₁)⁻¹ ⬝ ap02 f s ⬝ ap_con f p₀₁ p₁₂) :=
|
|
|
|
|
by induction p₁₂; esimp at *; induction s; induction p₂₁; induction p₁₀; reflexivity
|
|
|
|
|
|
|
|
|
|
definition aps_eq_hconcat_eq {p₀₁' p₂₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
|
|
|
|
|
(r : p₂₁' = p₂₁) : aps f (q ⬝ph s₁₁ ⬝hp r⁻¹) = ap02 f q ⬝ph aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
|
|
|
|
|
by induction q; induction r; reflexivity
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
infix ` ⬝p2 `:75 := eq_concat2
|
|
|
|
|
section -- cubes
|
|
|
|
|
|
|
|
|
|
variables {A B : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ a a' : A}
|
|
|
|
|
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂}
|
|
|
|
|
{p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂}
|
|
|
|
|
{p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂}
|
|
|
|
|
{p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
|
|
|
|
|
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁}
|
|
|
|
|
{s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
|
|
|
|
|
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁}
|
|
|
|
|
{s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
|
|
|
|
{s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
|
|
|
|
|
{s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
|
|
|
|
|
{b₁ b₂ b₃ b₄ : B}
|
|
|
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂)
|
|
|
|
|
|
|
|
|
|
definition whisker001 {p₀₀₁' : a₀₀₀ = a₀₀₂} (q : p₀₀₁' = p₀₀₁)
|
|
|
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube (q ⬝ph s₀₁₁) s₂₁₁ (q ⬝ph s₁₀₁) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
|
|
|
by induction q; exact c
|
|
|
|
|
|
|
|
|
|
definition whisker021 {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁' = p₀₂₁)
|
|
|
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
|
|
|
cube (s₀₁₁ ⬝hp q⁻¹) s₂₁₁ s₁₀₁ (q ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
|
|
|
|
|
by induction q; exact c
|
|
|
|
|
|
|
|
|
|
definition whisker021' {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁ = p₀₂₁')
|
|
|
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
|
|
|
cube (s₀₁₁ ⬝hp q) s₂₁₁ s₁₀₁ (q⁻¹ ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
|
|
|
|
|
by induction q; exact c
|
|
|
|
|
|
|
|
|
|
definition whisker201 {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁' = p₂₀₁)
|
|
|
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
|
|
|
cube s₀₁₁ (q ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q⁻¹) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
|
|
|
by induction q; exact c
|
|
|
|
|
|
|
|
|
|
definition whisker201' {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁ = p₂₀₁')
|
|
|
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
|
|
|
cube s₀₁₁ (q⁻¹ ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
|
|
|
by induction q; exact c
|
|
|
|
|
|
|
|
|
|
definition whisker221 {p₂₂₁' : a₂₂₀ = a₂₂₂} (q : p₂₂₁ = p₂₂₁')
|
|
|
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ (s₁₂₁ ⬝hp q) s₁₁₀ s₁₁₂ :=
|
|
|
|
|
by induction q; exact c
|
|
|
|
|
|
|
|
|
|
definition move221 {p₂₂₁' : a₂₂₀ = a₂₂₂} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁'} (q : p₂₂₁ = p₂₂₁')
|
|
|
|
|
(c : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
|
|
|
cube s₀₁₁ s₂₁₁ s₁₀₁ (s₁₂₁ ⬝hp q⁻¹) s₁₁₀ s₁₁₂ :=
|
|
|
|
|
by induction q; exact c
|
|
|
|
|
|
|
|
|
|
definition move201 {p₂₀₁' : a₂₀₀ = a₂₀₂} {s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁'} (q : p₂₀₁' = p₂₀₁)
|
|
|
|
|
(c : cube s₀₁₁ (q ⬝ph s₂₁₁) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
|
|
|
cube s₀₁₁ s₂₁₁ (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
|
|
|
by induction q; exact c
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
definition apo011 {A : Type} {B C D : A → Type} {a a' : A} {p : a = a'} {b : B a} {b' : B a'}
|
|
|
|
|
{c : C a} {c' : C a'} (f : Π⦃a⦄, B a → C a → D a) (q : b =[p] b') (r : c =[p] c') :
|
|
|
|
|
f b c =[p] f b' c' :=
|
|
|
|
|
begin induction q, induction r using idp_rec_on, exact idpo end
|
|
|
|
|
|
|
|
|
|
definition ap011_ap_square_right {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a')
|
|
|
|
|
{b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) :
|
|
|
|
|
square (ap011 f p q₁₂) (ap (λx, f x b₃) p) (ap (f a) q₁₃) (ap (f a') q₂₃) :=
|
|
|
|
|
by induction r; induction q₂₃; induction q₁₂; induction p; exact ids
|
|
|
|
|
|
|
|
|
|
definition ap011_ap_square_left {A B C : Type} (f : B → A → C) {a a' : A} (p : a = a')
|
|
|
|
|
{b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) :
|
|
|
|
|
square (ap011 f q₁₂ p) (ap (f b₃) p) (ap (λx, f x a) q₁₃) (ap (λx, f x a') q₂₃) :=
|
|
|
|
|
by induction r; induction q₂₃; induction q₁₂; induction p; exact ids
|
|
|
|
|
|
|
|
|
|
definition ap_ap011 {A B C D : Type} (g : C → D) (f : A → B → C) {a a' : A} {b b' : B}
|
|
|
|
|
(p : a = a') (q : b = b') : ap g (ap011 f p q) = ap011 (λa b, g (f a b)) p q :=
|
|
|
|
|
begin
|
|
|
|
|
induction p, exact (ap_compose g (f a) q)⁻¹
|
|
|
|
|
end
|
|
|
|
|
|
2017-02-18 21:56:38 +00:00
|
|
|
|
definition con2_assoc {A : Type} {x y z t : A} {p p' : x = y} {q q' : y = z} {r r' : z = t}
|
|
|
|
|
(h : p = p') (h' : q = q') (h'' : r = r') :
|
|
|
|
|
square ((h ◾ h') ◾ h'') (h ◾ (h' ◾ h'')) (con.assoc p q r) (con.assoc p' q' r') :=
|
|
|
|
|
by induction h; induction h'; induction h''; exact hrfl
|
|
|
|
|
|
|
|
|
|
definition con_left_inv_idp {A : Type} {x : A} {p : x = x} (q : p = idp)
|
|
|
|
|
: con.left_inv p = q⁻² ◾ q :=
|
|
|
|
|
by cases q; reflexivity
|
|
|
|
|
|
|
|
|
|
definition eckmann_hilton_con2 {A : Type} {x : A} {p p' q q': idp = idp :> x = x}
|
|
|
|
|
(h : p = p') (h' : q = q') : square (h ◾ h') (h' ◾ h) (eckmann_hilton p q) (eckmann_hilton p' q') :=
|
|
|
|
|
by induction h; induction h'; exact hrfl
|
|
|
|
|
|
|
|
|
|
definition ap_con_fn {A B : Type} {a a' : A} {b : B} (g h : A → b = b) (p : a = a') :
|
|
|
|
|
ap (λa, g a ⬝ h a) p = ap g p ◾ ap h p :=
|
|
|
|
|
by induction p; reflexivity
|
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
protected definition homotopy.rfl [reducible] [unfold_full] {A B : Type} {f : A → B} : f ~ f :=
|
|
|
|
|
homotopy.refl f
|
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
definition compose_id {A B : Type} (f : A → B) : f ∘ id ~ f :=
|
|
|
|
|
by reflexivity
|
|
|
|
|
|
|
|
|
|
definition id_compose {A B : Type} (f : A → B) : id ∘ f ~ f :=
|
|
|
|
|
by reflexivity
|
|
|
|
|
|
2017-01-05 19:02:41 +00:00
|
|
|
|
-- move
|
|
|
|
|
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
|
|
|
|
|
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
|
|
|
|
|
by induction p; reflexivity
|
|
|
|
|
|
2017-01-11 14:19:36 +00:00
|
|
|
|
definition ap_is_weakly_constant {A B : Type} {f : A → B}
|
|
|
|
|
(h : is_weakly_constant f) {a a' : A} (p : a = a') : ap f p = (h a a)⁻¹ ⬝ h a a' :=
|
|
|
|
|
by induction p; exact !con.left_inv⁻¹
|
|
|
|
|
|
|
|
|
|
definition ap_is_constant_idp {A B : Type} {f : A → B} {b : B} (p : Πa, f a = b) {a : A} (q : a = a)
|
|
|
|
|
(r : q = idp) : ap_is_constant p q = ap02 f r ⬝ (con.right_inv (p a))⁻¹ :=
|
|
|
|
|
by cases r; exact !idp_con⁻¹
|
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
definition con_right_inv_natural {A : Type} {a a' : A} {p p' : a = a'} (q : p = p') :
|
|
|
|
|
con.right_inv p = q ◾ q⁻² ⬝ con.right_inv p' :=
|
|
|
|
|
by induction q; induction p; reflexivity
|
|
|
|
|
|
|
|
|
|
definition whisker_right_ap {A B : Type} {a a' : A}{b₁ b₂ b₃ : B} (q : b₂ = b₃) (f : A → b₁ = b₂)
|
|
|
|
|
(p : a = a') : whisker_right q (ap f p) = ap (λa, f a ⬝ q) p :=
|
|
|
|
|
by induction p; reflexivity
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
infix ` ⬝hty `:75 := homotopy.trans
|
|
|
|
|
postfix `⁻¹ʰᵗʸ`:(max+1) := homotopy.symm
|
|
|
|
|
|
|
|
|
|
definition hassoc {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) : (h ∘ g) ∘ f ~ h ∘ (g ∘ f) :=
|
|
|
|
|
λa, idp
|
|
|
|
|
|
|
|
|
|
-- to algebra.homotopy_group
|
|
|
|
|
definition homotopy_group_homomorphism_pcompose (n : ℕ) [H : is_succ n] {A B C : Type*} (g : B →* C)
|
|
|
|
|
(f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f :=
|
|
|
|
|
begin
|
|
|
|
|
induction H with n, exact to_homotopy (homotopy_group_functor_compose (succ n) g f)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition apn_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
|
|
|
|
Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* :=
|
|
|
|
|
begin
|
|
|
|
|
refine !to_pinv_pequiv_MK2⁻¹*
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
|
|
|
|
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
|
|
|
|
|
-- begin
|
|
|
|
|
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
|
|
|
|
|
-- -- intro x, esimp,
|
|
|
|
|
-- end
|
|
|
|
|
|
|
|
|
|
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
|
|
|
|
|
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
|
|
|
|
|
-- idp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
section hsquare
|
|
|
|
|
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
|
|
|
|
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
|
|
|
|
|
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
|
|
|
|
|
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
|
|
|
|
|
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
|
|
|
|
|
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
|
|
|
|
|
|
|
|
|
|
definition hsquare [reducible] (f₁₀ : A₀₀ → A₂₀) (f₁₂ : A₀₂ → A₂₂)
|
|
|
|
|
(f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) : Type :=
|
|
|
|
|
f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁
|
|
|
|
|
|
|
|
|
|
definition hsquare_of_homotopy (p : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
definition homotopy_of_hsquare (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁ :=
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
definition hhcompose (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
|
|
|
|
hsquare (f₃₀ ∘ f₁₀) (f₃₂ ∘ f₁₂) f₀₁ f₄₁ :=
|
|
|
|
|
hwhisker_right f₁₀ q ⬝hty hwhisker_left f₃₂ p
|
|
|
|
|
|
|
|
|
|
definition hvcompose (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
|
|
|
|
hsquare f₁₀ f₁₄ (f₀₃ ∘ f₀₁) (f₂₃ ∘ f₂₁) :=
|
|
|
|
|
(hhcompose p⁻¹ʰᵗʸ q⁻¹ʰᵗʸ)⁻¹ʰᵗʸ
|
|
|
|
|
|
|
|
|
|
definition hhinverse {f₁₀ : A₀₀ ≃ A₂₀} {f₁₂ : A₀₂ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
|
|
|
|
hsquare f₁₀⁻¹ᵉ f₁₂⁻¹ᵉ f₂₁ f₀₁ :=
|
|
|
|
|
λb, eq_inv_of_eq ((p (f₁₀⁻¹ᵉ b))⁻¹ ⬝ ap f₂₁ (to_right_inv f₁₀ b))
|
|
|
|
|
|
|
|
|
|
definition hvinverse {f₀₁ : A₀₀ ≃ A₀₂} {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
|
|
|
|
hsquare f₁₂ f₁₀ f₀₁⁻¹ᵉ f₂₁⁻¹ᵉ :=
|
|
|
|
|
(hhinverse p⁻¹ʰᵗʸ)⁻¹ʰᵗʸ
|
|
|
|
|
|
|
|
|
|
infix ` ⬝htyh `:73 := hhcompose
|
|
|
|
|
infix ` ⬝htyv `:73 := hvcompose
|
|
|
|
|
postfix `⁻¹ʰᵗʸʰ`:(max+1) := hhinverse
|
|
|
|
|
postfix `⁻¹ʰᵗʸᵛ`:(max+1) := hvinverse
|
|
|
|
|
|
|
|
|
|
end hsquare
|
2017-03-02 03:58:50 +00:00
|
|
|
|
-- move to init.funext
|
|
|
|
|
protected definition homotopy.rec_on_idp_left [recursor] {A : Type} {P : A → Type} {g : Πa, P a}
|
|
|
|
|
{Q : Πf, (f ~ g) → Type} {f : Π x, P x}
|
|
|
|
|
(p : f ~ g) (H : Q g (homotopy.refl g)) : Q f p :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using homotopy.rec_on, induction q, exact H
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
--eq2
|
|
|
|
|
definition ap02_ap_constant {A B C : Type} {a a' : A} (f : B → C) (b : B) (p : a = a') :
|
|
|
|
|
square (ap_constant p (f b)) (ap02 f (ap_constant p b)) (ap_compose f (λx, b) p) idp :=
|
|
|
|
|
by induction p; exact ids
|
2017-03-02 01:38:13 +00:00
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
end eq open eq
|
2016-12-26 15:24:01 +00:00
|
|
|
|
|
|
|
|
|
namespace wedge
|
|
|
|
|
open pushout unit
|
|
|
|
|
protected definition glue (A B : Type*) : inl pt = inr pt :> wedge A B :=
|
|
|
|
|
pushout.glue ⋆
|
|
|
|
|
|
|
|
|
|
end wedge
|
|
|
|
|
|
2017-03-02 03:58:50 +00:00
|
|
|
|
namespace pi
|
|
|
|
|
|
|
|
|
|
definition is_contr_pi_of_neg {A : Type} (B : A → Type) (H : ¬ A) : is_contr (Πa, B a) :=
|
|
|
|
|
begin
|
|
|
|
|
apply is_contr.mk (λa, empty.elim (H a)), intro f, apply eq_of_homotopy, intro x, contradiction
|
|
|
|
|
end
|
|
|
|
|
end pi
|
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
namespace pointed
|
|
|
|
|
|
2017-03-02 03:58:50 +00:00
|
|
|
|
-- FALSE
|
|
|
|
|
-- definition phomotopy_pconst {A B : Type*} {f : A →* B} (p q : f ~* pconst A B) : p = q :=
|
|
|
|
|
-- begin
|
|
|
|
|
-- induction f with f f₀,
|
|
|
|
|
-- induction p with p p₀, induction q with q q₀,
|
|
|
|
|
-- esimp at *, induction q₀,
|
|
|
|
|
-- end
|
|
|
|
|
|
|
|
|
|
definition punit_pmap_phomotopy [constructor] {A : Type*} (f : punit →* A) : f ~* pconst punit A :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro u, induction u, exact respect_pt f },
|
|
|
|
|
{ reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition is_contr_punit_pmap (A : Type*) : is_contr (punit →* A) :=
|
|
|
|
|
is_contr.mk (pconst punit A) (λf, eq_of_phomotopy (punit_pmap_phomotopy f)⁻¹*)
|
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
definition phomotopy_of_eq_idp {A B : Type*} (f : A →* B) : phomotopy_of_eq idp = phomotopy.refl f :=
|
|
|
|
|
idp
|
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
definition to_fun_pequiv_trans {X Y Z : Type*} (f : X ≃* Y) (g :Y ≃* Z) : f ⬝e* g ~ g ∘ f :=
|
|
|
|
|
λx, idp
|
|
|
|
|
|
2017-03-02 03:58:50 +00:00
|
|
|
|
definition pr1_phomotopy_eq {A B : Type*} {f g : A →* B} {p q : f ~* g} (r : p = q) (a : A) :
|
|
|
|
|
p a = q a :=
|
|
|
|
|
ap010 to_homotopy r a
|
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
-- replace pcompose2 with this
|
2016-12-26 15:24:01 +00:00
|
|
|
|
definition pcompose2' {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (q : g ~* g') (p : f ~* f') :
|
|
|
|
|
g ∘* f ~* g' ∘* f' :=
|
|
|
|
|
pwhisker_right f q ⬝* pwhisker_left g' p
|
|
|
|
|
|
|
|
|
|
infixr ` ◾*' `:80 := pcompose2'
|
|
|
|
|
|
|
|
|
|
definition phomotopy_of_homotopy {X Y : Type*} {f g : X →* Y} (h : f ~ g) [is_set Y] : f ~* g :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ exact h },
|
|
|
|
|
{ apply is_set.elim }
|
|
|
|
|
end
|
|
|
|
|
|
2017-02-18 21:56:38 +00:00
|
|
|
|
definition ap1_gen_con_left {A B : Type} {a a' : A} {b₀ b₁ b₂ : B}
|
|
|
|
|
{f : A → b₀ = b₁} {f' : A → b₁ = b₂} (p : a = a') {q₀ q₁ : b₀ = b₁} {q₀' q₁' : b₁ = b₂}
|
|
|
|
|
(r₀ : f a = q₀) (r₁ : f a' = q₁) (r₀' : f' a = q₀') (r₁' : f' a' = q₁') :
|
|
|
|
|
ap1_gen (λa, f a ⬝ f' a) p (r₀ ◾ r₀') (r₁ ◾ r₁') =
|
|
|
|
|
whisker_right q₀' (ap1_gen f p r₀ r₁) ⬝ whisker_left q₁ (ap1_gen f' p r₀' r₁') :=
|
|
|
|
|
begin induction r₀, induction r₁, induction r₀', induction r₁', induction p, reflexivity end
|
|
|
|
|
|
|
|
|
|
definition ap1_gen_con_left_idp {A B : Type} {a : A} {b₀ b₁ b₂ : B}
|
|
|
|
|
{f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ : b₀ = b₁} {q₁ : b₁ = b₂}
|
|
|
|
|
(r₀ : f a = q₀) (r₁ : f' a = q₁) :
|
|
|
|
|
ap1_gen_con_left idp r₀ r₀ r₁ r₁ =
|
|
|
|
|
!con.left_inv ⬝ (ap (whisker_right q₁) !con.left_inv ◾ ap (whisker_left _) !con.left_inv)⁻¹ :=
|
|
|
|
|
begin induction r₀, induction r₁, reflexivity end
|
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
-- /- the pointed type of (unpointed) dependent maps -/
|
|
|
|
|
-- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* :=
|
|
|
|
|
-- pointed.mk' (Πa, P a)
|
|
|
|
|
|
|
|
|
|
-- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) :=
|
|
|
|
|
-- pequiv_of_equiv eq_equiv_homotopy rfl
|
|
|
|
|
|
|
|
|
|
-- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
|
|
|
|
|
-- : pupi P ≃* pupi Q :=
|
|
|
|
|
-- pequiv_of_equiv (pi_equiv_pi_right g)
|
|
|
|
|
-- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
section psquare
|
2016-12-26 15:24:01 +00:00
|
|
|
|
/-
|
2017-03-02 01:38:13 +00:00
|
|
|
|
Squares of pointed maps
|
2016-12-26 15:24:01 +00:00
|
|
|
|
|
|
|
|
|
We treat expressions of the form
|
2017-03-02 01:38:13 +00:00
|
|
|
|
psquare f g h k :≡ k ∘* f ~* g ∘* h
|
2016-12-26 15:24:01 +00:00
|
|
|
|
as squares, where f is the top, g is the bottom, h is the left face and k is the right face.
|
|
|
|
|
Then the following are operations on squares
|
|
|
|
|
-/
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
|
|
|
|
{f₁₀ : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
|
|
|
|
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
|
|
|
|
{f₁₂ : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
|
|
|
|
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
|
|
|
|
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
|
|
|
|
|
|
|
|
|
definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
|
|
|
|
(f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type :=
|
|
|
|
|
f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁
|
2016-12-26 15:24:01 +00:00
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition psquare_of_phomotopy (p : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁) : psquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
|
|
|
|
p
|
2016-12-26 15:24:01 +00:00
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition phomotopy_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁ :=
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
definition phcompose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
|
|
|
|
psquare (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) f₀₁ f₄₁ :=
|
|
|
|
|
!passoc⁻¹* ⬝* pwhisker_right f₁₀ q ⬝* !passoc ⬝* pwhisker_left f₃₂ p ⬝* !passoc⁻¹*
|
|
|
|
|
|
|
|
|
|
definition pvcompose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
|
|
|
|
psquare f₁₀ f₁₄ (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₂₁) :=
|
2016-12-26 15:24:01 +00:00
|
|
|
|
(phcompose p⁻¹* q⁻¹*)⁻¹*
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
|
|
|
|
psquare f₁₀⁻¹ᵉ* f₁₂⁻¹ᵉ* f₂₁ f₀₁ :=
|
|
|
|
|
!pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv f₁₂)⁻¹* ⬝* !passoc ⬝*
|
2016-12-26 15:24:01 +00:00
|
|
|
|
pwhisker_left _
|
|
|
|
|
(!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid)
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition pvinverse {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
|
|
|
|
psquare f₁₂ f₁₀ f₀₁⁻¹ᵉ* f₂₁⁻¹ᵉ* :=
|
2016-12-26 15:24:01 +00:00
|
|
|
|
(phinverse p⁻¹*)⁻¹*
|
|
|
|
|
|
|
|
|
|
infix ` ⬝h* `:73 := phcompose
|
|
|
|
|
infix ` ⬝v* `:73 := pvcompose
|
|
|
|
|
postfix `⁻¹ʰ*`:(max+1) := phinverse
|
|
|
|
|
postfix `⁻¹ᵛ*`:(max+1) := pvinverse
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition ap1_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
|
|
|
|
psquare (Ω→ f₁₀) (Ω→ f₁₂) (Ω→ f₀₁) (Ω→ f₂₁) :=
|
2016-12-26 15:24:01 +00:00
|
|
|
|
!ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition apn_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
|
|
|
|
psquare (Ω→[n] f₁₀) (Ω→[n] f₁₂) (Ω→[n] f₀₁) (Ω→[n] f₂₁) :=
|
2016-12-26 15:24:01 +00:00
|
|
|
|
!apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition ptrunc_functor_psquare (n : ℕ₋₂) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
|
|
|
|
psquare (ptrunc_functor n f₁₀) (ptrunc_functor n f₁₂)
|
|
|
|
|
(ptrunc_functor n f₀₁) (ptrunc_functor n f₂₁) :=
|
2016-12-26 15:24:01 +00:00
|
|
|
|
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition homotopy_group_functor_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
|
|
|
|
psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) :=
|
|
|
|
|
!homotopy_group_functor_compose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝*
|
|
|
|
|
!homotopy_group_functor_compose
|
|
|
|
|
|
|
|
|
|
definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n]
|
|
|
|
|
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) :=
|
2016-12-26 15:24:01 +00:00
|
|
|
|
begin
|
|
|
|
|
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
|
|
|
|
|
end
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
end psquare
|
2016-12-26 15:24:01 +00:00
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
definition phomotopy_of_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
|
|
|
|
phomotopy_of_eq (eq_of_phomotopy p) = p :=
|
|
|
|
|
to_right_inv (pmap_eq_equiv f g) p
|
|
|
|
|
|
|
|
|
|
definition ap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) :
|
|
|
|
|
ap (λf : A →* B, f a) (eq_of_phomotopy p) = p a :=
|
|
|
|
|
ap010 to_homotopy (phomotopy_of_eq_of_phomotopy p) a
|
|
|
|
|
|
|
|
|
|
definition phomotopy_rec_on_eq [recursor] {A B : Type*} {f g : A →* B}
|
|
|
|
|
{Q : (f ~* g) → Type} (p : f ~* g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) : Q p :=
|
|
|
|
|
phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p)
|
|
|
|
|
|
|
|
|
|
definition phomotopy_rec_on_idp [recursor] {A B : Type*} {f : A →* B}
|
|
|
|
|
{Q : Π{g}, (f ~* g) → Type} {g : A →* B} (p : f ~* g) (H : Q (phomotopy.refl f)) : Q p :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using phomotopy_rec_on_eq,
|
|
|
|
|
induction q, exact H
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition phomotopy_rec_on_eq_phomotopy_of_eq {A B : Type*} {f g: A →* B}
|
|
|
|
|
{Q : (f ~* g) → Type} (p : f = g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) :
|
|
|
|
|
phomotopy_rec_on_eq (phomotopy_of_eq p) H = H p :=
|
|
|
|
|
begin
|
|
|
|
|
unfold phomotopy_rec_on_eq,
|
|
|
|
|
refine ap (λp, p ▸ _) !adj ⬝ _,
|
|
|
|
|
refine !tr_compose⁻¹ ⬝ _,
|
|
|
|
|
apply apdt
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition phomotopy_rec_on_idp_refl {A B : Type*} (f : A →* B)
|
|
|
|
|
{Q : Π{g}, (f ~* g) → Type} (H : Q (phomotopy.refl f)) :
|
|
|
|
|
phomotopy_rec_on_idp phomotopy.rfl H = H :=
|
|
|
|
|
!phomotopy_rec_on_eq_phomotopy_of_eq
|
|
|
|
|
|
|
|
|
|
definition phomotopy_eq_equiv {A B : Type*} {f g : A →* B} (h k : f ~* g) :
|
|
|
|
|
(h = k) ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
|
|
|
|
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h :=
|
|
|
|
|
calc
|
|
|
|
|
h = k ≃ phomotopy.sigma_char _ _ h = phomotopy.sigma_char _ _ k
|
|
|
|
|
: eq_equiv_fn_eq (phomotopy.sigma_char f g) h k
|
|
|
|
|
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
|
|
|
|
pathover (λp, p pt ⬝ respect_pt g = respect_pt f) (to_homotopy_pt h) p (to_homotopy_pt k)
|
|
|
|
|
: sigma_eq_equiv _ _
|
|
|
|
|
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
|
|
|
|
to_homotopy_pt h = ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k
|
|
|
|
|
: sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (to_homotopy_pt h) (to_homotopy_pt k))
|
|
|
|
|
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
|
|
|
|
ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k = to_homotopy_pt h
|
|
|
|
|
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
|
|
|
|
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
|
|
|
|
whisker_right (respect_pt g) (apd10 p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
|
|
|
|
: sigma_equiv_sigma_right (λp, equiv_eq_closed_left _ (whisker_right _ !whisker_right_ap⁻¹))
|
|
|
|
|
... ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
|
|
|
|
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
|
|
|
|
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
|
|
|
|
|
|
|
|
|
definition phomotopy_eq {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
|
|
|
|
|
(q : whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h) : h = k :=
|
|
|
|
|
to_inv (phomotopy_eq_equiv h k) ⟨p, q⟩
|
|
|
|
|
|
|
|
|
|
definition phomotopy_eq' {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
|
|
|
|
|
(q : square (to_homotopy_pt h) (to_homotopy_pt k) (whisker_right (respect_pt g) (p pt)) idp) : h = k :=
|
|
|
|
|
phomotopy_eq p (eq_of_square q)⁻¹
|
|
|
|
|
|
|
|
|
|
definition eq_of_phomotopy_refl {X Y : Type*} (f : X →* Y) :
|
|
|
|
|
eq_of_phomotopy (phomotopy.refl f) = idpath f :=
|
|
|
|
|
begin
|
|
|
|
|
apply to_inv_eq_of_eq, reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition trans_refl {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* phomotopy.refl g = p :=
|
|
|
|
|
begin
|
|
|
|
|
induction A with A a₀, induction B with B b₀,
|
|
|
|
|
induction f with f f₀, induction g with g g₀, induction p with p p₀,
|
|
|
|
|
esimp at *, induction g₀, induction p₀,
|
|
|
|
|
reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition refl_trans {A B : Type*} {f g : A →* B} (p : f ~* g) : phomotopy.refl f ⬝* p = p :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using phomotopy_rec_on_idp,
|
|
|
|
|
induction A with A a₀, induction B with B b₀,
|
|
|
|
|
induction f with f f₀, esimp at *, induction f₀,
|
|
|
|
|
reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition trans_assoc {A B : Type*} {f g h i : A →* B} (p : f ~* g) (q : g ~* h)
|
|
|
|
|
(r : h ~* i) : p ⬝* q ⬝* r = p ⬝* (q ⬝* r) :=
|
|
|
|
|
begin
|
|
|
|
|
induction r using phomotopy_rec_on_idp,
|
|
|
|
|
induction q using phomotopy_rec_on_idp,
|
|
|
|
|
induction p using phomotopy_rec_on_idp,
|
2017-03-02 01:38:13 +00:00
|
|
|
|
induction B with B b₀,
|
|
|
|
|
induction f with f f₀, esimp at *, induction f₀,
|
|
|
|
|
reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition refl_symm {A B : Type*} (f : A →* B) : phomotopy.rfl⁻¹* = phomotopy.refl f :=
|
|
|
|
|
begin
|
|
|
|
|
induction B with B b₀,
|
2017-01-18 22:19:00 +00:00
|
|
|
|
induction f with f f₀, esimp at *, induction f₀,
|
|
|
|
|
reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition trans_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* p⁻¹* = phomotopy.rfl :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using phomotopy_rec_on_idp, exact !refl_trans ⬝ !refl_symm
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition symm_trans {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹* ⬝* p = phomotopy.rfl :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using phomotopy_rec_on_idp, exact !trans_refl ⬝ !refl_symm
|
|
|
|
|
end
|
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
definition trans2 {A B : Type*} {f g h : A →* B} {p p' : f ~* g} {q q' : g ~* h}
|
|
|
|
|
(r : p = p') (s : q = q') : p ⬝* q = p' ⬝* q' :=
|
|
|
|
|
ap011 phomotopy.trans r s
|
|
|
|
|
|
|
|
|
|
infixl ` ◾** `:80 := pointed.trans2
|
|
|
|
|
|
|
|
|
|
definition phwhisker_left {A B : Type*} {f g h : A →* B} (p : f ~* g) {q q' : g ~* h}
|
|
|
|
|
(s : q = q') : p ⬝* q = p ⬝* q' :=
|
|
|
|
|
idp ◾** s
|
|
|
|
|
|
|
|
|
|
definition phwhisker_right {A B : Type*} {f g h : A →* B} {p p' : f ~* g} (q : g ~* h)
|
|
|
|
|
(r : p = p') : p ⬝* q = p' ⬝* q :=
|
|
|
|
|
r ◾** idp
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition pwhisker_left_refl {A B C : Type*} (g : B →* C) (f : A →* B) :
|
|
|
|
|
pwhisker_left g (phomotopy.refl f) = phomotopy.refl (g ∘* f) :=
|
|
|
|
|
begin
|
|
|
|
|
induction A with A a₀, induction B with B b₀, induction C with C c₀,
|
|
|
|
|
induction f with f f₀, induction g with g g₀,
|
|
|
|
|
esimp at *, induction g₀, induction f₀, reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pwhisker_right_refl {A B C : Type*} (f : A →* B) (g : B →* C) :
|
|
|
|
|
pwhisker_right f (phomotopy.refl g) = phomotopy.refl (g ∘* f) :=
|
|
|
|
|
begin
|
|
|
|
|
induction A with A a₀, induction B with B b₀, induction C with C c₀,
|
|
|
|
|
induction f with f f₀, induction g with g g₀,
|
|
|
|
|
esimp at *, induction g₀, induction f₀, reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pwhisker_left_trans {A B C : Type*} (g : B →* C) {f₁ f₂ f₃ : A →* B}
|
|
|
|
|
(p : f₁ ~* f₂) (q : f₂ ~* f₃) :
|
|
|
|
|
pwhisker_left g (p ⬝* q) = pwhisker_left g p ⬝* pwhisker_left g q :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using phomotopy_rec_on_idp,
|
|
|
|
|
induction q using phomotopy_rec_on_idp,
|
|
|
|
|
refine _ ⬝ !pwhisker_left_refl⁻¹ ◾** !pwhisker_left_refl⁻¹,
|
|
|
|
|
refine ap (pwhisker_left g) !trans_refl ⬝ !pwhisker_left_refl ⬝ !trans_refl⁻¹
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pwhisker_right_trans {A B C : Type*} (f : A →* B) {g₁ g₂ g₃ : B →* C}
|
|
|
|
|
(p : g₁ ~* g₂) (q : g₂ ~* g₃) :
|
|
|
|
|
pwhisker_right f (p ⬝* q) = pwhisker_right f p ⬝* pwhisker_right f q :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using phomotopy_rec_on_idp,
|
|
|
|
|
induction q using phomotopy_rec_on_idp,
|
|
|
|
|
refine _ ⬝ !pwhisker_right_refl⁻¹ ◾** !pwhisker_right_refl⁻¹,
|
|
|
|
|
refine ap (pwhisker_right f) !trans_refl ⬝ !pwhisker_right_refl ⬝ !trans_refl⁻¹
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition trans_eq_of_eq_symm_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
|
|
|
|
{r : f ~* h} (s : q = p⁻¹* ⬝* r) : p ⬝* q = r :=
|
|
|
|
|
idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_symm p ◾** idp ⬝ !refl_trans
|
|
|
|
|
|
|
|
|
|
definition eq_symm_trans_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
|
|
|
|
{r : f ~* h} (s : p ⬝* q = r) : q = p⁻¹* ⬝* r :=
|
|
|
|
|
!refl_trans⁻¹ ⬝ !symm_trans⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s
|
|
|
|
|
|
|
|
|
|
definition trans_eq_of_eq_trans_symm {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
|
|
|
|
{r : f ~* h} (s : p = r ⬝* q⁻¹*) : p ⬝* q = r :=
|
|
|
|
|
s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** symm_trans q ⬝ !trans_refl
|
|
|
|
|
|
|
|
|
|
definition eq_trans_symm_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
|
|
|
|
{r : f ~* h} (s : p ⬝* q = r) : p = r ⬝* q⁻¹* :=
|
|
|
|
|
!trans_refl⁻¹ ⬝ idp ◾** !trans_symm⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp
|
|
|
|
|
|
|
|
|
|
section phsquare
|
|
|
|
|
/-
|
|
|
|
|
Squares of pointed homotopies
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
variables {A B : Type*} {f₀₀ f₂₀ f₄₀ f₀₂ f₂₂ f₄₂ f₀₄ f₂₄ f₄₄ : A →* B}
|
|
|
|
|
{p₁₀ : f₀₀ ~* f₂₀} {p₃₀ : f₂₀ ~* f₄₀}
|
|
|
|
|
{p₀₁ : f₀₀ ~* f₀₂} {p₂₁ : f₂₀ ~* f₂₂} {p₄₁ : f₄₀ ~* f₄₂}
|
|
|
|
|
{p₁₂ : f₀₂ ~* f₂₂} {p₃₂ : f₂₂ ~* f₄₂}
|
|
|
|
|
{p₀₃ : f₀₂ ~* f₀₄} {p₂₃ : f₂₂ ~* f₂₄} {p₄₃ : f₄₂ ~* f₄₄}
|
|
|
|
|
{p₁₄ : f₀₄ ~* f₂₄} {p₃₄ : f₂₄ ~* f₄₄}
|
|
|
|
|
|
|
|
|
|
definition phsquare [reducible] (p₁₀ : f₀₀ ~* f₂₀) (p₁₂ : f₀₂ ~* f₂₂)
|
|
|
|
|
(p₀₁ : f₀₀ ~* f₀₂) (p₂₁ : f₂₀ ~* f₂₂) : Type :=
|
|
|
|
|
p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂
|
|
|
|
|
|
|
|
|
|
definition phsquare_of_eq (p : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂) : phsquare p₁₀ p₁₂ p₀₁ p₂₁ := p
|
|
|
|
|
definition eq_of_phsquare (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂ := p
|
|
|
|
|
|
|
|
|
|
definition phhcompose (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₃₀ p₃₂ p₂₁ p₄₁) :
|
|
|
|
|
phsquare (p₁₀ ⬝* p₃₀) (p₁₂ ⬝* p₃₂) p₀₁ p₄₁ :=
|
|
|
|
|
!trans_assoc ⬝ idp ◾** q ⬝ !trans_assoc⁻¹ ⬝ p ◾** idp ⬝ !trans_assoc
|
|
|
|
|
|
|
|
|
|
definition phvcompose (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₁₂ p₁₄ p₀₃ p₂₃) :
|
|
|
|
|
phsquare p₁₀ p₁₄ (p₀₁ ⬝* p₀₃) (p₂₁ ⬝* p₂₃) :=
|
|
|
|
|
(phhcompose p⁻¹ q⁻¹)⁻¹
|
|
|
|
|
|
|
|
|
|
/-
|
|
|
|
|
The names are very baroque. The following stands for
|
|
|
|
|
"pointed homotopy path-horizontal composition" (i.e. composition on the left with a path)
|
|
|
|
|
The names are obtained by using the ones for squares, and putting "ph" in front of it.
|
|
|
|
|
In practice, use the notation ⬝ph** defined below, which might be easier to remember
|
|
|
|
|
-/
|
|
|
|
|
definition phphcompose {p₀₁'} (p : p₀₁' = p₀₁) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
|
|
|
|
phsquare p₁₀ p₁₂ p₀₁' p₂₁ :=
|
|
|
|
|
by induction p; exact q
|
|
|
|
|
|
|
|
|
|
definition phhpcompose {p₂₁'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₂₁ = p₂₁') :
|
|
|
|
|
phsquare p₁₀ p₁₂ p₀₁ p₂₁' :=
|
|
|
|
|
by induction p; exact q
|
|
|
|
|
|
|
|
|
|
definition phpvcompose {p₁₀'} (p : p₁₀' = p₁₀) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
|
|
|
|
phsquare p₁₀' p₁₂ p₀₁ p₂₁ :=
|
|
|
|
|
by induction p; exact q
|
|
|
|
|
|
|
|
|
|
definition phvpcompose {p₁₂'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₁₂ = p₁₂') :
|
|
|
|
|
phsquare p₁₀ p₁₂' p₀₁ p₂₁ :=
|
|
|
|
|
by induction p; exact q
|
|
|
|
|
|
|
|
|
|
definition phhinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₀⁻¹* p₁₂⁻¹* p₂₁ p₀₁ :=
|
|
|
|
|
begin
|
|
|
|
|
refine (eq_symm_trans_of_trans_eq _)⁻¹,
|
|
|
|
|
refine !trans_assoc⁻¹ ⬝ _,
|
|
|
|
|
refine (eq_trans_symm_of_trans_eq _)⁻¹,
|
|
|
|
|
exact (eq_of_phsquare p)⁻¹
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition phvinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₂ p₁₀ p₀₁⁻¹* p₂₁⁻¹* :=
|
|
|
|
|
(phhinverse p⁻¹)⁻¹
|
|
|
|
|
|
|
|
|
|
infix ` ⬝h** `:71 := phhcompose
|
|
|
|
|
infix ` ⬝v** `:72 := phvcompose
|
|
|
|
|
infix ` ⬝ph** `:73 := phphcompose
|
|
|
|
|
infix ` ⬝hp** `:73 := phhpcompose
|
|
|
|
|
infix ` ⬝pv** `:73 := phpvcompose
|
|
|
|
|
infix ` ⬝vp** `:73 := phvpcompose
|
|
|
|
|
postfix `⁻¹ʰ**`:(max+1) := phhinverse
|
|
|
|
|
postfix `⁻¹ᵛ**`:(max+1) := phvinverse
|
|
|
|
|
|
|
|
|
|
definition passoc_phomotopy_right {A B C D : Type*} (h : C →* D) (g : B →* C) {f f' : A →* B}
|
|
|
|
|
(p : f ~* f') : phsquare (passoc h g f) (passoc h g f')
|
|
|
|
|
(pwhisker_left (h ∘* g) p) (pwhisker_left h (pwhisker_left g p)) :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using phomotopy_rec_on_idp,
|
|
|
|
|
refine idp ◾** (ap (pwhisker_left h) !pwhisker_left_refl ⬝ !pwhisker_left_refl) ⬝ _ ⬝
|
|
|
|
|
!pwhisker_left_refl⁻¹ ◾** idp,
|
|
|
|
|
exact !trans_refl ⬝ !refl_trans⁻¹
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pwhisker_right_pwhisker_left {A B C : Type*} {g g' : B →* C} {f f' : A →* B}
|
|
|
|
|
(p : g ~* g') (q : f ~* f') :
|
|
|
|
|
phsquare (pwhisker_right f p) (pwhisker_right f' p) (pwhisker_left g q) (pwhisker_left g' q) :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using phomotopy_rec_on_idp,
|
|
|
|
|
induction q using phomotopy_rec_on_idp,
|
|
|
|
|
exact !pwhisker_right_refl ◾** !pwhisker_left_refl ⬝
|
|
|
|
|
!pwhisker_left_refl⁻¹ ◾** !pwhisker_right_refl⁻¹
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end phsquare
|
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
definition phomotopy_of_eq_con {A B : Type*} {f g h : A →* B} (p : f = g) (q : g = h) :
|
|
|
|
|
phomotopy_of_eq (p ⬝ q) = phomotopy_of_eq p ⬝* phomotopy_of_eq q :=
|
|
|
|
|
begin induction q, induction p, exact !trans_refl⁻¹ end
|
|
|
|
|
|
|
|
|
|
definition pcompose_eq_of_phomotopy {A B C : Type*} (g : B →* C) {f f' : A →* B} (H : f ~* f') :
|
|
|
|
|
ap (λf, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_left g H) :=
|
|
|
|
|
begin
|
|
|
|
|
induction H using phomotopy_rec_on_idp,
|
|
|
|
|
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
|
|
|
|
|
exact !pwhisker_left_refl⁻¹
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition respect_pt_pcompose {A B C : Type*} (g : B →* C) (f : A →* B)
|
|
|
|
|
: respect_pt (g ∘* f) = ap g (respect_pt f) ⬝ respect_pt g :=
|
|
|
|
|
idp
|
|
|
|
|
|
|
|
|
|
definition phomotopy_mk_ppmap [constructor] {A B C : Type*} {f g : A →* ppmap B C} (p : Πa, f a ~* g a)
|
|
|
|
|
(q : p pt ⬝* phomotopy_of_eq (respect_pt g) = phomotopy_of_eq (respect_pt f))
|
|
|
|
|
: f ~* g :=
|
|
|
|
|
begin
|
|
|
|
|
apply phomotopy.mk (λa, eq_of_phomotopy (p a)),
|
|
|
|
|
apply eq_of_fn_eq_fn (pmap_eq_equiv _ _), esimp [pmap_eq_equiv],
|
|
|
|
|
refine !phomotopy_of_eq_con ⬝ _,
|
2017-03-02 01:38:13 +00:00
|
|
|
|
refine !phomotopy_of_eq_of_phomotopy ◾** idp ⬝ q,
|
2017-01-18 22:19:00 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pcompose_pconst_pcompose {A B C D : Type*} (h : C →* D) (g : B →* C) :
|
|
|
|
|
pcompose_pconst (h ∘* g) =
|
|
|
|
|
passoc h g (pconst A B) ⬝* (pwhisker_left h (pcompose_pconst g) ⬝* pcompose_pconst h) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy_eq,
|
|
|
|
|
{ intro a, exact !idp_con⁻¹ },
|
|
|
|
|
{ induction h with h h₀, induction g with g g₀, induction D with D d₀, induction C with C c₀,
|
|
|
|
|
esimp at *, induction g₀, induction h₀, reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition ppcompose_left_pcompose [constructor] {A B C D : Type*} (h : C →* D) (g : B →* C) :
|
|
|
|
|
@ppcompose_left A _ _ (h ∘* g) ~* ppcompose_left h ∘* ppcompose_left g :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy_mk_ppmap,
|
|
|
|
|
{ exact passoc h g },
|
|
|
|
|
{ esimp,
|
2017-03-02 01:38:13 +00:00
|
|
|
|
refine idp ◾** (!phomotopy_of_eq_con ⬝ ap011 phomotopy.trans
|
2017-01-18 22:19:00 +00:00
|
|
|
|
(ap phomotopy_of_eq !pcompose_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy)
|
|
|
|
|
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
|
|
|
|
|
exact (pcompose_pconst_pcompose h g)⁻¹ }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pcompose_pconst_phomotopy {A B C : Type*} {f f' : B →* C} (p : f ~* f') :
|
|
|
|
|
pwhisker_right (pconst A B) p ⬝* pcompose_pconst f' = pcompose_pconst f :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy_eq,
|
|
|
|
|
{ intro a, exact to_homotopy_pt p },
|
|
|
|
|
{ induction p using phomotopy_rec_on_idp, induction C with C c₀, induction f with f f₀,
|
|
|
|
|
esimp at *, induction f₀, reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition ppcompose_left_pconst [constructor] (A B C : Type*) :
|
|
|
|
|
@ppcompose_left A _ _ (pconst B C) ~* pconst (ppmap A B) (ppmap A C) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy_mk_ppmap,
|
|
|
|
|
{ exact pconst_pcompose },
|
|
|
|
|
{ refine idp ◾** !phomotopy_of_eq_idp ⬝ !phomotopy_of_eq_of_phomotopy⁻¹ }
|
|
|
|
|
end
|
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
definition ppcompose_left_phomotopy [constructor] {A B C : Type*} {g g' : B →* C} (p : g ~* g') :
|
|
|
|
|
@ppcompose_left A _ _ g ~* ppcompose_left g' :=
|
|
|
|
|
begin
|
|
|
|
|
induction p using phomotopy_rec_on_idp,
|
|
|
|
|
reflexivity
|
|
|
|
|
end
|
|
|
|
|
/- a more explicit proof of ppcompose_left_phomotopy, which might be useful if we need to prove properties about it
|
|
|
|
|
-/
|
|
|
|
|
-- fapply phomotopy_mk_ppmap,
|
|
|
|
|
-- { intro f, exact pwhisker_right f p },
|
|
|
|
|
-- { refine ap (λx, _ ⬝* x) !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
|
|
|
|
|
-- exact pcompose_pconst_phomotopy p }
|
|
|
|
|
|
|
|
|
|
definition ppcompose_left_phomotopy_refl {A B C : Type*} (g : B →* C) :
|
|
|
|
|
ppcompose_left_phomotopy (phomotopy.refl g) = phomotopy.refl (@ppcompose_left A _ _ g) :=
|
|
|
|
|
!phomotopy_rec_on_idp_refl
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
-- definition pmap_eq_equiv {X Y : Type*} (f g : X →* Y) : (f = g) ≃ (f ~* g) :=
|
|
|
|
|
-- begin
|
|
|
|
|
-- refine eq_equiv_fn_eq_of_equiv (@pmap.sigma_char X Y) f g ⬝e _,
|
|
|
|
|
-- refine !sigma_eq_equiv ⬝e _,
|
|
|
|
|
-- refine _ ⬝e (phomotopy.sigma_char f g)⁻¹ᵉ,
|
|
|
|
|
-- fapply sigma_equiv_sigma,
|
|
|
|
|
-- { esimp, apply eq_equiv_homotopy },
|
|
|
|
|
-- { induction g with g gp, induction Y with Y y0, esimp, intro p, induction p, esimp at *,
|
|
|
|
|
-- refine !pathover_idp ⬝e _, refine _ ⬝e !eq_equiv_eq_symm,
|
|
|
|
|
-- apply equiv_eq_closed_right, exact !idp_con⁻¹ }
|
|
|
|
|
-- end
|
|
|
|
|
|
|
|
|
|
definition pmap_eq_idp {X Y : Type*} (f : X →* Y) :
|
|
|
|
|
pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f :=
|
|
|
|
|
ap (λx, eq_of_phomotopy (phomotopy.mk _ x)) !inv_inv ⬝ eq_of_phomotopy_refl f
|
|
|
|
|
|
|
|
|
|
definition pfunext [constructor] (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply pequiv_of_equiv,
|
|
|
|
|
{ fapply equiv.MK: esimp,
|
|
|
|
|
{ intro f, fapply pmap_eq,
|
|
|
|
|
{ intro x, exact f x },
|
|
|
|
|
{ exact (respect_pt f)⁻¹ }},
|
|
|
|
|
{ intro p, fapply pmap.mk,
|
|
|
|
|
{ intro x, exact ap010 pmap.to_fun p x },
|
|
|
|
|
{ note z := apd respect_pt p,
|
|
|
|
|
note z2 := square_of_pathover z,
|
|
|
|
|
refine eq_of_hdeg_square z2 ⬝ !ap_constant }},
|
|
|
|
|
{ intro p, exact sorry },
|
|
|
|
|
{ intro p, exact sorry }},
|
|
|
|
|
{ apply pmap_eq_idp}
|
|
|
|
|
end
|
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
end pointed open pointed
|
|
|
|
|
|
|
|
|
|
namespace trunc
|
|
|
|
|
|
|
|
|
|
-- TODO: redefine loopn_ptrunc_pequiv
|
|
|
|
|
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) :
|
|
|
|
|
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
|
|
|
|
|
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
|
|
|
|
|
begin
|
|
|
|
|
revert n, induction k with k IH: intro n,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ exact sorry }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
|
|
|
|
|
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro a, induction a with a, reflexivity },
|
|
|
|
|
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
|
|
|
|
|
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro a, reflexivity },
|
|
|
|
|
{ reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
|
|
|
|
|
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro a, induction a with a, reflexivity },
|
|
|
|
|
{ apply idp_con }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end trunc
|
|
|
|
|
|
|
|
|
|
namespace is_equiv
|
|
|
|
|
|
|
|
|
|
definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g)
|
|
|
|
|
: f⁻¹ ~ g⁻¹ :=
|
|
|
|
|
λb, (left_inv g (f⁻¹ b))⁻¹ ⬝ ap g⁻¹ ((p (f⁻¹ b))⁻¹ ⬝ right_inv f b)
|
|
|
|
|
|
|
|
|
|
definition to_inv_homotopy_to_inv {A B : Type} {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ :=
|
|
|
|
|
inv_homotopy_inv p
|
|
|
|
|
|
|
|
|
|
end is_equiv
|
|
|
|
|
|
|
|
|
|
namespace prod
|
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
definition pprod_functor [constructor] {A B C D : Type*} (f : A →* C) (g : B →* D) : A ×* B →* C ×* D :=
|
|
|
|
|
pmap.mk (prod_functor f g) (prod_eq (respect_pt f) (respect_pt g))
|
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
open prod.ops
|
|
|
|
|
definition prod_pathover_equiv {A : Type} {B C : A → Type} {a a' : A} (p : a = a')
|
|
|
|
|
(x : B a × C a) (x' : B a' × C a') : x =[p] x' ≃ x.1 =[p] x'.1 × x.2 =[p] x'.2 :=
|
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{ intro q, induction q, constructor: constructor },
|
|
|
|
|
{ intro v, induction v with q r, exact prod_pathover _ _ _ q r },
|
|
|
|
|
{ intro v, induction v with q r, induction x with b c, induction x' with b' c',
|
|
|
|
|
esimp at *, induction q, refine idp_rec_on r _, reflexivity },
|
|
|
|
|
{ intro q, induction q, induction x with b c, reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end prod open prod
|
|
|
|
|
|
|
|
|
|
namespace sigma
|
|
|
|
|
|
|
|
|
|
-- set_option pp.notation false
|
|
|
|
|
-- set_option pp.binder_types true
|
|
|
|
|
|
|
|
|
|
open sigma.ops
|
|
|
|
|
definition pathover_pr1 [unfold 9] {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
|
|
|
|
{a a' : A} {p : a = a'} {x : Σb, C a b} {x' : Σb', C a' b'}
|
|
|
|
|
(q : x =[p] x') : x.1 =[p] x'.1 :=
|
|
|
|
|
begin induction q, constructor end
|
|
|
|
|
|
|
|
|
|
definition is_prop_elimo_self {A : Type} (B : A → Type) {a : A} (b : B a) {H : is_prop (B a)} :
|
|
|
|
|
@is_prop.elimo A B a a idp b b H = idpo :=
|
|
|
|
|
!is_prop.elim
|
|
|
|
|
|
|
|
|
|
definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} (C : Πa, B a → Type)
|
|
|
|
|
{a a' : A} (p : a = a') (x : Σb, C a b) (x' : Σb', C a' b')
|
|
|
|
|
[Πa b, is_prop (C a b)] : x =[p] x' ≃ x.1 =[p] x'.1 :=
|
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{ exact pathover_pr1 },
|
|
|
|
|
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
|
|
|
|
apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
|
|
|
|
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
|
|
|
|
have c = c', from !is_prop.elim, induction this,
|
|
|
|
|
rewrite [▸*, is_prop_elimo_self (C a) c] },
|
|
|
|
|
{ intro q, induction q, induction x with b c, rewrite [▸*, is_prop_elimo_self (C a) c] }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition sigma_ua {A B : Type} (C : A ≃ B → Type) :
|
|
|
|
|
(Σ(p : A = B), C (equiv_of_eq p)) ≃ Σ(e : A ≃ B), C e :=
|
|
|
|
|
sigma_equiv_sigma_left' !eq_equiv_equiv
|
|
|
|
|
|
|
|
|
|
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
|
|
|
|
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
|
|
|
|
|
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
|
|
|
|
|
-- begin
|
|
|
|
|
-- fapply equiv.MK,
|
|
|
|
|
-- { exact pathover_pr1 },
|
|
|
|
|
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
|
|
|
|
-- { intro q, induction q,
|
|
|
|
|
-- have c = c', from !is_prop.elim, induction this,
|
|
|
|
|
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
|
|
|
|
|
-- { esimp, generalize ⟨b, c⟩, intro x q, }
|
|
|
|
|
-- end
|
|
|
|
|
--rexact @(ap pathover_pr1) _ idpo _,
|
|
|
|
|
|
|
|
|
|
end sigma open sigma
|
|
|
|
|
|
2016-09-17 00:23:05 +00:00
|
|
|
|
namespace group
|
|
|
|
|
open is_trunc
|
2016-09-28 14:33:21 +00:00
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) :
|
|
|
|
|
φ ⬝g ψ ~ ψ ∘ φ :=
|
|
|
|
|
by reflexivity
|
|
|
|
|
|
|
|
|
|
definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy_of_homotopy, reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H)
|
|
|
|
|
: pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy_of_homotopy, reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ)
|
|
|
|
|
: pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy_of_homotopy, exact H
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) :
|
|
|
|
|
pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ :=
|
|
|
|
|
begin
|
|
|
|
|
apply phomotopy_of_homotopy, reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ :=
|
|
|
|
|
begin
|
|
|
|
|
induction φ with φ φe, induction ψ with ψ ψe,
|
|
|
|
|
exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) :=
|
|
|
|
|
begin
|
|
|
|
|
have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f,
|
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{ intro φ, induction φ, constructor, assumption },
|
|
|
|
|
{ intro v, induction v, constructor, assumption },
|
|
|
|
|
{ intro v, induction v, reflexivity },
|
|
|
|
|
{ intro φ, induction φ, reflexivity }
|
|
|
|
|
end,
|
|
|
|
|
apply is_trunc_equiv_closed_rev, exact H
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- definition is_equiv_isomorphism
|
|
|
|
|
|
|
|
|
|
|
2016-11-03 19:34:06 +00:00
|
|
|
|
-- some extra instances for type class inference
|
2017-01-18 22:19:00 +00:00
|
|
|
|
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
|
|
|
|
|
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
|
2016-11-24 04:54:57 +00:00
|
|
|
|
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
|
|
|
|
-- homomorphism.struct φ
|
2016-09-17 00:23:05 +00:00
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
|
|
|
|
|
-- : @is_mul_hom G G' _
|
2016-11-24 04:54:57 +00:00
|
|
|
|
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
|
|
|
|
-- homomorphism.struct φ
|
2016-09-17 00:23:05 +00:00
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
|
|
|
|
|
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
|
2016-11-24 04:54:57 +00:00
|
|
|
|
-- homomorphism.struct φ
|
2016-11-17 21:21:40 +00:00
|
|
|
|
|
2016-09-17 00:23:05 +00:00
|
|
|
|
end group open group
|
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
namespace fiber
|
2016-11-17 21:21:40 +00:00
|
|
|
|
|
2017-03-02 01:38:13 +00:00
|
|
|
|
definition pcompose_ppoint {A B : Type*} (f : A →* B) : f ∘* ppoint f ~* pconst (pfiber f) B :=
|
2016-12-26 15:24:01 +00:00
|
|
|
|
begin
|
2017-03-02 01:38:13 +00:00
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ exact point_eq },
|
|
|
|
|
{ exact !idp_con⁻¹ }
|
2016-12-26 15:24:01 +00:00
|
|
|
|
end
|
2016-11-17 21:21:40 +00:00
|
|
|
|
|
2016-10-13 00:07:18 +00:00
|
|
|
|
definition ap1_ppoint_phomotopy {A B : Type*} (f : A →* B)
|
|
|
|
|
: Ω→ (ppoint f) ∘* pfiber_loop_space f ~* ppoint (Ω→ f) :=
|
|
|
|
|
begin
|
|
|
|
|
exact sorry
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pfiber_equiv_of_square_ppoint {A B C D : Type*} {f : A →* B} {g : C →* D}
|
|
|
|
|
(h : A ≃* C) (k : B ≃* D) (s : k ∘* f ~* g ∘* h)
|
|
|
|
|
: ppoint g ∘* pfiber_equiv_of_square h k s ~* h ∘* ppoint f :=
|
|
|
|
|
sorry
|
|
|
|
|
|
2016-09-17 23:11:04 +00:00
|
|
|
|
end fiber
|
2016-09-17 00:23:05 +00:00
|
|
|
|
|
2017-01-05 17:18:44 +00:00
|
|
|
|
namespace is_trunc
|
|
|
|
|
|
|
|
|
|
definition center' {A : Type} (H : is_contr A) : A := center A
|
|
|
|
|
|
2017-02-20 21:23:57 +00:00
|
|
|
|
definition pequiv_punit_of_is_contr [constructor] (A : Type*) (H : is_contr A) : A ≃* punit :=
|
|
|
|
|
pequiv_of_equiv (equiv_unit_of_is_contr A) (@is_prop.elim unit _ _ _)
|
|
|
|
|
|
|
|
|
|
definition pequiv_punit_of_is_contr' [constructor] (A : Type) (H : is_contr A)
|
|
|
|
|
: pointed.MK A (center A) ≃* punit :=
|
|
|
|
|
pequiv_punit_of_is_contr (pointed.MK A (center A)) H
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
definition is_trunc_is_contr_fiber [instance] [priority 900] (n : ℕ₋₂) {A B : Type} (f : A → B)
|
|
|
|
|
(b : B) [is_trunc n A] [is_trunc n B] : is_trunc n (is_contr (fiber f b)) :=
|
|
|
|
|
begin
|
|
|
|
|
cases n,
|
|
|
|
|
{ apply is_contr_of_inhabited_prop, apply is_contr_fun_of_is_equiv,
|
|
|
|
|
apply is_equiv_of_is_contr },
|
|
|
|
|
{ apply is_trunc_succ_of_is_prop }
|
|
|
|
|
end
|
|
|
|
|
|
2017-01-05 17:18:44 +00:00
|
|
|
|
end is_trunc
|
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
namespace is_conn
|
|
|
|
|
|
|
|
|
|
open unit trunc_index nat is_trunc pointed.ops
|
|
|
|
|
|
|
|
|
|
definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A]
|
|
|
|
|
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
|
|
|
|
|
begin
|
|
|
|
|
assert aa : trunc -1 A,
|
|
|
|
|
{ apply center },
|
|
|
|
|
assert H3 : is_conn 0 A,
|
|
|
|
|
{ induction aa with a, exact H 0 a },
|
|
|
|
|
exact is_contr_of_trivial_homotopy n A H
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- don't make is_prop_is_trunc an instance
|
|
|
|
|
definition is_trunc_succ_is_trunc [instance] (n m : ℕ₋₂) (A : Type) : is_trunc (n.+1) (is_trunc m A) :=
|
|
|
|
|
is_trunc_of_le _ !minus_one_le_succ
|
|
|
|
|
|
|
|
|
|
definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A]
|
|
|
|
|
(H : Π(k : ℕ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A :=
|
|
|
|
|
begin
|
|
|
|
|
apply is_contr_of_trivial_homotopy_nat m (trunc m A),
|
|
|
|
|
intro k a H2,
|
|
|
|
|
induction a with a,
|
|
|
|
|
apply is_trunc_equiv_closed_rev,
|
|
|
|
|
exact equiv_of_pequiv (homotopy_group_trunc_of_le (pointed.MK A a) _ _ H2),
|
|
|
|
|
exact H k a H2
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ℕ) (A : Type*) [is_trunc n A]
|
|
|
|
|
(H : Π(k : ℕ), k ≤ m → is_contr (π[k] A)) : is_conn m A :=
|
|
|
|
|
begin
|
|
|
|
|
have is_conn 0 A, proof H 0 !zero_le qed,
|
|
|
|
|
apply is_conn_of_trivial_homotopy n m A,
|
|
|
|
|
intro k a H2, revert a, apply is_conn.elim -1,
|
|
|
|
|
cases A with A a, exact H k H2
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end is_conn
|
|
|
|
|
|
2016-10-07 20:00:09 +00:00
|
|
|
|
namespace circle
|
|
|
|
|
|
|
|
|
|
/-
|
|
|
|
|
Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`.
|
|
|
|
|
And suppose `p : a = a'` is a path constructor in `A`.
|
|
|
|
|
Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal
|
|
|
|
|
to the square which defined H on the path constructor
|
|
|
|
|
-/
|
|
|
|
|
|
2016-11-24 04:54:57 +00:00
|
|
|
|
definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base)
|
2016-10-07 20:00:09 +00:00
|
|
|
|
(q : square p p (ap f loop) (ap g loop))
|
2016-11-24 04:54:57 +00:00
|
|
|
|
: natural_square (circle.rec p (eq_pathover q)) loop = q :=
|
2016-10-07 20:00:09 +00:00
|
|
|
|
begin
|
2016-11-24 04:54:57 +00:00
|
|
|
|
-- refine !natural_square_eq ⬝ _,
|
2016-10-07 20:00:09 +00:00
|
|
|
|
refine ap square_of_pathover !rec_loop ⬝ _,
|
|
|
|
|
exact to_right_inv !eq_pathover_equiv_square q
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end circle
|
2016-10-12 21:14:34 +00:00
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
namespace susp
|
|
|
|
|
|
2017-02-18 21:56:38 +00:00
|
|
|
|
definition loop_psusp_intro_natural {X Y Z : Type*} (g : psusp Y →* Z) (f : X →* Y) :
|
|
|
|
|
loop_psusp_intro (g ∘* psusp_functor f) ~* loop_psusp_intro g ∘* f :=
|
|
|
|
|
pwhisker_right _ !ap1_pcompose ⬝* !passoc ⬝* pwhisker_left _ !loop_psusp_unit_natural⁻¹* ⬝*
|
|
|
|
|
!passoc⁻¹*
|
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
definition psusp_functor_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
|
|
|
|
psusp_functor f ~* psusp_functor g :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro x, induction x,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ !elim_merid⁻¹ᵖ,
|
|
|
|
|
exact ap merid (p a), }},
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition psusp_functor_pid (A : Type*) : psusp_functor (pid A) ~* pid (psusp A) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro x, induction x,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ apply eq_pathover_id_right, apply hdeg_square, apply elim_merid }},
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition psusp_functor_pcompose {A B C : Type*} (g : B →* C) (f : A →* B) :
|
|
|
|
|
psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro x, induction x,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ apply eq_pathover, apply hdeg_square, esimp,
|
|
|
|
|
refine !elim_merid ⬝ _ ⬝ (ap_compose (psusp_functor g) _ _)⁻¹ᵖ,
|
|
|
|
|
refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }},
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition psusp_elim_psusp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) :
|
|
|
|
|
psusp.elim g ∘* psusp_functor f ~* psusp.elim (g ∘* f) :=
|
|
|
|
|
begin
|
|
|
|
|
refine !passoc ⬝* _, exact pwhisker_left _ !psusp_functor_pcompose⁻¹*
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition psusp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : psusp.elim f ~* psusp.elim g :=
|
|
|
|
|
pwhisker_left _ (psusp_functor_phomotopy p)
|
|
|
|
|
|
|
|
|
|
definition psusp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y)
|
|
|
|
|
: g ∘* psusp.elim f ~* psusp.elim (Ω→ g ∘* f) :=
|
|
|
|
|
begin
|
|
|
|
|
refine _ ⬝* pwhisker_left _ !psusp_functor_pcompose⁻¹*,
|
|
|
|
|
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
|
|
|
|
exact pwhisker_right _ !loop_psusp_counit_natural
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end susp
|
|
|
|
|
|
|
|
|
|
namespace category
|
|
|
|
|
|
|
|
|
|
-- replace precategory_group with precategory_Group (the former has a universe error)
|
|
|
|
|
definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group :=
|
|
|
|
|
begin
|
|
|
|
|
fapply precategory.mk,
|
|
|
|
|
{ exact λG H, G →g H },
|
|
|
|
|
{ exact _ },
|
|
|
|
|
{ exact λG H K ψ φ, ψ ∘g φ },
|
|
|
|
|
{ exact λG, gid G },
|
|
|
|
|
{ intros, apply homomorphism_eq, esimp },
|
|
|
|
|
{ intros, apply homomorphism_eq, esimp },
|
|
|
|
|
{ intros, apply homomorphism_eq, esimp }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup :=
|
|
|
|
|
begin
|
|
|
|
|
fapply precategory.mk,
|
|
|
|
|
{ exact λG H, G →g H },
|
|
|
|
|
{ exact _ },
|
|
|
|
|
{ exact λG H K ψ φ, ψ ∘g φ },
|
|
|
|
|
{ exact λG, gid G },
|
|
|
|
|
{ intros, apply homomorphism_eq, esimp },
|
|
|
|
|
{ intros, apply homomorphism_eq, esimp },
|
|
|
|
|
{ intros, apply homomorphism_eq, esimp }
|
|
|
|
|
end
|
|
|
|
|
open iso
|
|
|
|
|
definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) :
|
|
|
|
|
is_iso φ :=
|
|
|
|
|
begin
|
|
|
|
|
fconstructor,
|
|
|
|
|
{ exact (isomorphism.mk φ H)⁻¹ᵍ },
|
|
|
|
|
{ apply homomorphism_eq, rexact left_inv φ },
|
|
|
|
|
{ apply homomorphism_eq, rexact right_inv φ }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) :
|
|
|
|
|
is_equiv (group_fun φ) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply adjointify,
|
|
|
|
|
{ exact group_fun φ⁻¹ʰ },
|
|
|
|
|
{ note p := right_inverse φ, exact ap010 group_fun p },
|
|
|
|
|
{ note p := left_inverse φ, exact ap010 group_fun p }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{ intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ },
|
|
|
|
|
{ intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ },
|
|
|
|
|
{ intro v, induction v with φ φe, apply isomorphism_eq, reflexivity },
|
|
|
|
|
{ intro φ, induction φ with φ φi, apply iso_eq, reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
|
|
|
|
|
begin
|
|
|
|
|
induction v with m v, induction v with i o,
|
|
|
|
|
fapply trunctype.mk,
|
|
|
|
|
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
|
|
|
|
|
(Πa, m (i a) a = o) },
|
|
|
|
|
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
|
|
|
|
|
have is_prop (Πa, m a o = a), from _,
|
|
|
|
|
have is_prop (Πa, m o a = a), from _,
|
|
|
|
|
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
|
|
|
|
|
have is_prop (Πa, m (i a) a = o), from _,
|
|
|
|
|
apply is_trunc_prod }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition Group.sigma_char2.{u} : Group.{u} ≃
|
|
|
|
|
Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v :=
|
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{ intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi,
|
|
|
|
|
repeat (fconstructor; do 2 try assumption), },
|
|
|
|
|
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
|
|
|
|
|
repeat induction v with x v, constructor, fconstructor, repeat assumption },
|
|
|
|
|
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
|
|
|
|
|
repeat induction v with x v, reflexivity },
|
|
|
|
|
{ intro v, repeat induction v with x v, reflexivity },
|
|
|
|
|
end
|
|
|
|
|
open is_trunc
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
local attribute group.to_has_mul group.to_has_inv [coercion]
|
|
|
|
|
|
|
|
|
|
theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) :
|
|
|
|
|
@inv A G ~ @inv A H :=
|
|
|
|
|
begin
|
|
|
|
|
have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g,
|
|
|
|
|
from λg, !mul_inv_cancel_right⁻¹,
|
2017-02-02 22:14:48 +00:00
|
|
|
|
cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4,
|
|
|
|
|
cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4,
|
2016-12-26 15:24:01 +00:00
|
|
|
|
change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p,
|
|
|
|
|
calc
|
|
|
|
|
Gi g = Hm (Hm (Gi g) g) (Hi g) : foo
|
|
|
|
|
... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p'
|
|
|
|
|
... = Hm G1 (Hi g) : by rewrite Gh4
|
|
|
|
|
... = Gm G1 (Hi g) : by rewrite p'
|
|
|
|
|
... = Hi g : Gh2
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem one_eq_of_mul_eq {A : Type} (G H : group A)
|
|
|
|
|
(p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) :
|
|
|
|
|
@one A (group.to_has_one G) = @one A (group.to_has_one H) :=
|
|
|
|
|
begin
|
|
|
|
|
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
|
|
|
|
|
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
|
|
|
|
|
exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1,
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
open prod.ops
|
|
|
|
|
definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A}
|
|
|
|
|
(H : Group_props (m, (i, o))) : group A :=
|
|
|
|
|
⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1,
|
|
|
|
|
mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄
|
|
|
|
|
|
|
|
|
|
theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A}
|
|
|
|
|
(H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) :
|
|
|
|
|
(m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') :=
|
|
|
|
|
begin
|
|
|
|
|
have is_set A, from pr1 H,
|
|
|
|
|
apply equiv_of_is_prop,
|
|
|
|
|
{ intro p, exact apd100 (eq_pr1 p)},
|
|
|
|
|
{ intro p, apply prod_eq (eq_of_homotopy2 p),
|
|
|
|
|
apply prod_eq: esimp [Group_props] at *; esimp,
|
|
|
|
|
{ apply eq_of_homotopy,
|
|
|
|
|
exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p },
|
|
|
|
|
{ exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }}
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
open sigma.ops
|
|
|
|
|
|
|
|
|
|
theorem Group_eq_equiv_lemma {G H : Group}
|
|
|
|
|
(p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) :
|
|
|
|
|
((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃
|
2017-01-18 22:19:00 +00:00
|
|
|
|
(is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) :=
|
2016-12-26 15:24:01 +00:00
|
|
|
|
begin
|
|
|
|
|
refine !sigma_pathover_equiv_of_is_prop ⬝e _,
|
|
|
|
|
induction G with G g, induction H with H h,
|
|
|
|
|
esimp [Group.sigma_char2] at p, induction p,
|
|
|
|
|
refine !pathover_idp ⬝e _,
|
2017-02-02 22:14:48 +00:00
|
|
|
|
induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι,
|
|
|
|
|
exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2
|
|
|
|
|
(Group.sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2
|
2016-12-26 15:24:01 +00:00
|
|
|
|
end
|
|
|
|
|
|
2017-01-18 22:19:00 +00:00
|
|
|
|
definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e :=
|
2016-12-26 15:24:01 +00:00
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{ intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ },
|
|
|
|
|
{ intro v, induction v with e p, exact isomorphism_of_equiv e p },
|
|
|
|
|
{ intro v, induction v with e p, induction e, reflexivity },
|
|
|
|
|
{ intro φ, induction φ with φ H, induction φ, reflexivity },
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) :=
|
|
|
|
|
begin
|
|
|
|
|
refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _,
|
|
|
|
|
refine !sigma_eq_equiv ⬝e _,
|
|
|
|
|
refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _,
|
|
|
|
|
transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1),
|
2017-01-18 22:19:00 +00:00
|
|
|
|
@is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua,
|
2016-12-26 15:24:01 +00:00
|
|
|
|
exact !isomorphism.sigma_char⁻¹ᵉ
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition to_fun_Group_eq_equiv {G H : Group} (p : G = H)
|
|
|
|
|
: Group_eq_equiv G H p ~ isomorphism_of_eq p :=
|
|
|
|
|
begin
|
|
|
|
|
induction p, reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition Group_eq2 {G H : Group} {p q : G = H}
|
|
|
|
|
(r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q :=
|
|
|
|
|
begin
|
|
|
|
|
apply eq_of_fn_eq_fn (Group_eq_equiv G H),
|
|
|
|
|
apply isomorphism_eq,
|
|
|
|
|
intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹,
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ :=
|
|
|
|
|
Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ
|
|
|
|
|
|
|
|
|
|
definition category_Group.{u} : category Group.{u} :=
|
|
|
|
|
category.mk precategory_Group
|
|
|
|
|
begin
|
|
|
|
|
intro G H,
|
|
|
|
|
apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H),
|
|
|
|
|
intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition category_AbGroup : category AbGroup :=
|
|
|
|
|
category.mk precategory_AbGroup sorry
|
|
|
|
|
|
|
|
|
|
definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group
|
|
|
|
|
definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup
|
|
|
|
|
|
|
|
|
|
end category
|
|
|
|
|
|
2016-10-12 21:14:34 +00:00
|
|
|
|
namespace sphere
|
|
|
|
|
|
|
|
|
|
-- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) :
|
|
|
|
|
-- f ~* pconst (S* n) (S* m) :=
|
|
|
|
|
-- begin
|
|
|
|
|
-- assert H : is_contr (Ω[n] (S* m)),
|
|
|
|
|
-- { apply homotopy_group_sphere_le, },
|
|
|
|
|
-- apply phomotopy_of_eq,
|
|
|
|
|
-- apply eq_of_fn_eq_fn !psphere_pmap_pequiv,
|
|
|
|
|
-- apply @is_prop.elim
|
|
|
|
|
-- end
|
|
|
|
|
|
|
|
|
|
end sphere
|
2016-12-08 19:16:40 +00:00
|
|
|
|
|
2016-12-26 15:24:01 +00:00
|
|
|
|
definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u : image f x) (v : image f y) : u =[p] v :=
|
2016-12-08 19:16:40 +00:00
|
|
|
|
begin
|
|
|
|
|
apply is_prop.elimo
|
|
|
|
|
end
|
2016-12-08 21:20:14 +00:00
|
|
|
|
|
|
|
|
|
section injective_surjective
|
|
|
|
|
open trunc fiber image
|
|
|
|
|
|
|
|
|
|
variables {A B C : Type} [is_set A] [is_set B] [is_set C] (f : A → B) (g : B → C) (h : A → C) (H : g ∘ f ~ h)
|
|
|
|
|
include H
|
|
|
|
|
|
|
|
|
|
definition is_embedding_factor : is_embedding h → is_embedding f :=
|
|
|
|
|
begin
|
|
|
|
|
induction H using homotopy.rec_on_idp,
|
|
|
|
|
intro E,
|
|
|
|
|
fapply is_embedding_of_is_injective,
|
|
|
|
|
intro x y p,
|
|
|
|
|
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
|
2016-12-26 15:24:01 +00:00
|
|
|
|
end
|
2016-12-08 21:20:14 +00:00
|
|
|
|
|
|
|
|
|
definition is_surjective_factor : is_surjective h → is_surjective g :=
|
|
|
|
|
begin
|
|
|
|
|
induction H using homotopy.rec_on_idp,
|
|
|
|
|
intro S,
|
|
|
|
|
intro c,
|
|
|
|
|
note p := S c,
|
|
|
|
|
induction p,
|
|
|
|
|
apply tr,
|
|
|
|
|
fapply fiber.mk,
|
|
|
|
|
exact f a,
|
|
|
|
|
exact p
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end injective_surjective
|