lean2/library/theories/analysis/metric_space.lean

772 lines
26 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Metric spaces.
-/
import data.real.complete data.pnat data.list.sort ..topology.basic data.set
open nat real eq.ops classical
structure metric_space [class] (M : Type) : Type :=
(dist : M → M → )
(dist_self : ∀ x : M, dist x x = 0)
(eq_of_dist_eq_zero : ∀ {x y : M}, dist x y = 0 → x = y)
(dist_comm : ∀ x y : M, dist x y = dist y x)
(dist_triangle : ∀ x y z : M, dist x z ≤ dist x y + dist y z)
namespace analysis
section metric_space_M
variables {M : Type} [metric_space M]
definition dist (x y : M) : := metric_space.dist x y
proposition dist_self (x : M) : dist x x = 0 := metric_space.dist_self x
proposition eq_of_dist_eq_zero {x y : M} (H : dist x y = 0) : x = y :=
metric_space.eq_of_dist_eq_zero H
proposition dist_comm (x y : M) : dist x y = dist y x := metric_space.dist_comm x y
proposition dist_eq_zero_iff (x y : M) : dist x y = 0 ↔ x = y :=
iff.intro eq_of_dist_eq_zero (suppose x = y, this ▸ !dist_self)
proposition dist_triangle (x y z : M) : dist x z ≤ dist x y + dist y z :=
metric_space.dist_triangle x y z
proposition dist_nonneg (x y : M) : 0 ≤ dist x y :=
have dist x y + dist y x ≥ 0, by rewrite -(dist_self x); apply dist_triangle,
have 2 * dist x y ≥ 0, using this,
by krewrite [-real.one_add_one, right_distrib, +one_mul, dist_comm at {2}]; apply this,
nonneg_of_mul_nonneg_left this two_pos
proposition dist_pos_of_ne {x y : M} (H : x ≠ y) : dist x y > 0 :=
lt_of_le_of_ne !dist_nonneg (suppose 0 = dist x y, H (iff.mp !dist_eq_zero_iff this⁻¹))
proposition ne_of_dist_pos {x y : M} (H : dist x y > 0) : x ≠ y :=
suppose x = y,
have H1 [visible] : dist x x > 0, by rewrite this at {2}; exact H,
by rewrite dist_self at H1; apply not_lt_self _ H1
proposition eq_of_forall_dist_le {x y : M} (H : ∀ ε, ε > 0 → dist x y ≤ ε) : x = y :=
eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H)
/- convergence of a sequence -/
definition converges_to_seq (X : → M) (y : M) : Prop :=
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ ⦃n⦄, n ≥ N → dist (X n) y < ε
-- the same, with ≤ in place of <; easier to prove, harder to use
definition converges_to_seq.intro {X : → M} {y : M}
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → dist (X n) y ≤ ε) :
converges_to_seq X y :=
take ε, assume epos : ε > 0,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain N HN, from H e2pos,
exists.intro N
(take n, suppose n ≥ N,
calc
dist (X n) y ≤ ε / 2 : HN _ `n ≥ N`
... < ε : div_two_lt_of_pos epos)
notation X `⟶` y `in` `` := converges_to_seq X y
definition converges_seq [class] (X : → M) : Prop := ∃ y, X ⟶ y in
noncomputable definition limit_seq (X : → M) [H : converges_seq X] : M := some H
proposition converges_to_limit_seq (X : → M) [H : converges_seq X] :
(X ⟶ limit_seq X in ) :=
some_spec H
proposition converges_to_seq_unique {X : → M} {y₁ y₂ : M}
(H₁ : X ⟶ y₁ in ) (H₂ : X ⟶ y₂ in ) : y₁ = y₂ :=
eq_of_forall_dist_le
(take ε, suppose ε > 0,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2), from H₁ e2pos,
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2), from H₂ e2pos,
let N := max N₁ N₂ in
have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left,
have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right,
have dist y₁ y₂ < ε, from calc
dist y₁ y₂ ≤ dist y₁ (X N) + dist (X N) y₂ : dist_triangle
... = dist (X N) y₁ + dist (X N) y₂ : dist_comm
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
... = ε : add_halves,
show dist y₁ y₂ ≤ ε, from le_of_lt this)
proposition eq_limit_of_converges_to_seq {X : → M} {y : M} (H : X ⟶ y in ) :
y = @limit_seq M _ X (exists.intro y H) :=
converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H))
proposition converges_to_seq_constant (y : M) : (λn, y) ⟶ y in :=
take ε, assume egt0 : ε > 0,
exists.intro 0
(take n, suppose n ≥ 0,
calc
dist y y = 0 : !dist_self
... < ε : egt0)
proposition converges_to_seq_offset {X : → M} {y : M} (k : ) (H : X ⟶ y in ) :
(λ n, X (n + k)) ⟶ y in :=
take ε, suppose ε > 0,
obtain N HN, from H `ε > 0`,
exists.intro N
(take n : , assume ngtN : n ≥ N,
show dist (X (n + k)) y < ε, from HN (n + k) (le.trans ngtN !le_add_right))
proposition converges_to_seq_offset_left {X : → M} {y : M} (k : ) (H : X ⟶ y in ) :
(λ n, X (k + n)) ⟶ y in :=
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
by+ rewrite aux; exact converges_to_seq_offset k H
proposition converges_to_seq_offset_succ {X : → M} {y : M} (H : X ⟶ y in ) :
(λ n, X (succ n)) ⟶ y in :=
converges_to_seq_offset 1 H
proposition converges_to_seq_of_converges_to_seq_offset
{X : → M} {y : M} {k : } (H : (λ n, X (n + k)) ⟶ y in ) :
X ⟶ y in :=
take ε, suppose ε > 0,
obtain N HN, from H `ε > 0`,
exists.intro (N + k)
(take n : , assume nge : n ≥ N + k,
have n - k ≥ N, from nat.le_sub_of_add_le nge,
have dist (X (n - k + k)) y < ε, from HN (n - k) this,
show dist (X n) y < ε, using this,
by rewrite [(nat.sub_add_cancel (le.trans !le_add_left nge)) at this]; exact this)
proposition converges_to_seq_of_converges_to_seq_offset_left
{X : → M} {y : M} {k : } (H : (λ n, X (k + n)) ⟶ y in ) :
X ⟶ y in :=
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
by+ rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H
proposition converges_to_seq_of_converges_to_seq_offset_succ
{X : → M} {y : M} (H : (λ n, X (succ n)) ⟶ y in ) :
X ⟶ y in :=
@converges_to_seq_of_converges_to_seq_offset M _ X y 1 H
proposition converges_to_seq_offset_iff (X : → M) (y : M) (k : ) :
((λ n, X (n + k)) ⟶ y in ) ↔ (X ⟶ y in ) :=
iff.intro converges_to_seq_of_converges_to_seq_offset !converges_to_seq_offset
proposition converges_to_seq_offset_left_iff (X : → M) (y : M) (k : ) :
((λ n, X (k + n)) ⟶ y in ) ↔ (X ⟶ y in ) :=
iff.intro converges_to_seq_of_converges_to_seq_offset_left !converges_to_seq_offset_left
proposition converges_to_seq_offset_succ_iff (X : → M) (y : M) :
((λ n, X (succ n)) ⟶ y in ) ↔ (X ⟶ y in ) :=
iff.intro converges_to_seq_of_converges_to_seq_offset_succ !converges_to_seq_offset_succ
section
open list
definition r_trans : transitive (@le _) := λ a b c, !le.trans
definition r_refl : reflexive (@le _) := λ a, !le.refl
theorem dec_prf_eq (P : Prop) (H1 H2 : decidable P) : H1 = H2 :=
begin
induction H1,
induction H2,
reflexivity,
apply absurd a a_1,
induction H2,
apply absurd a_1 a,
reflexivity
end
-- there's a very ugly part of this proof.
proposition bounded_of_converges_seq {X : → M} {x : M} (H : X ⟶ x in ) :
∃ K : , ∀ n : , dist (X n) x ≤ K :=
begin
cases H zero_lt_one with N HN,
cases em (N = 0),
existsi 1,
intro n,
apply le_of_lt,
apply HN,
rewrite a,
apply zero_le,
let l := map (λ n : , -dist (X n) x) (upto N),
have Hnenil : l ≠ nil, from (map_ne_nil_of_ne_nil _ (upto_ne_nil_of_ne_zero a)),
existsi max (-list.min (λ a b : , le a b) l Hnenil) 1,
intro n,
have Hsmn : ∀ m : , m < N → dist (X m) x ≤ max (-list.min (λ a b : , le a b) l Hnenil) 1, begin
intro m Hm,
apply le.trans,
rotate 1,
apply le_max_left,
note Hall := min_lemma real.le_total r_trans r_refl Hnenil,
have Hmem : -dist (X m) x ∈ (map (λ (n : ), -dist (X n) x) (upto N)), from mem_map _ (mem_upto_of_lt Hm),
note Hallm' := of_mem_of_all Hmem Hall,
apply le_neg_of_le_neg,
esimp, esimp at Hallm',
have Heqs : (λ (a b : real), classical.prop_decidable (@le.{1} real real.real_has_le a b))
=
(@decidable_le.{1} real
(@decidable_linear_ordered_comm_group.to_decidable_linear_order.{1} real
(@decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group.{1} real
(@discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring.{1} real
real.discrete_linear_ordered_field)))),
begin
apply funext, intro, apply funext, intro,
apply dec_prf_eq
end,
rewrite -Heqs,
exact Hallm'
end,
cases em (n < N) with Elt Ege,
apply Hsmn,
exact Elt,
apply le_of_lt,
apply lt_of_lt_of_le,
apply HN,
apply le_of_not_gt Ege,
apply le_max_right
end
end
/- cauchy sequences -/
definition cauchy (X : → M) : Prop :=
∀ ε : , ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε
proposition cauchy_of_converges_seq (X : → M) [H : converges_seq X] : cauchy X :=
take ε, suppose ε > 0,
obtain y (Hy : converges_to_seq X y), from H,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y < ε / 2), from Hy e2pos,
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y < ε / 2), from Hy e2pos,
let N := max N₁ N₂ in
exists.intro N
(take m n, suppose m ≥ N, suppose n ≥ N,
have m ≥ N₁, from le.trans !le_max_left `m ≥ N`,
have n ≥ N₂, from le.trans !le_max_right `n ≥ N`,
have dN₁ : dist (X m) y < ε / 2, from HN₁ `m ≥ N₁`,
have dN₂ : dist (X n) y < ε / 2, from HN₂ `n ≥ N₂`,
show dist (X m) (X n) < ε, from calc
dist (X m) (X n) ≤ dist (X m) y + dist y (X n) : dist_triangle
... = dist (X m) y + dist (X n) y : dist_comm
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
... = ε : add_halves)
end metric_space_M
/- convergence of a function at a point -/
section metric_space_M_N
variables {M N : Type} [strucM : metric_space M] [strucN : metric_space N]
include strucM strucN
definition converges_to_at (f : M → N) (y : N) (x : M) :=
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ≠ x ∧ dist x' x < δ → dist (f x') y < ε
notation f `⟶` y `at` x := converges_to_at f y x
definition converges_at [class] (f : M → N) (x : M) :=
∃ y, converges_to_at f y x
noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N :=
some H
proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] :
(f ⟶ limit_at f x at x) :=
some_spec H
section
omit strucN
set_option pp.coercions true
--set_option pp.all true
open pnat rat
section
omit strucM
private lemma of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat (p : pnat) :
of_rat (rat_of_pnat p) = of_nat (nat_of_pnat p) :=
rfl
end
theorem cnv_real_of_cnv_nat {X : → M} {c : M} (H : ∀ n : , dist (X n) c < 1 / (real.of_nat n + 1)) :
∀ ε : , ε > 0 → ∃ N : , ∀ n : , n ≥ N → dist (X n) c < ε :=
begin
intros ε Hε,
cases ex_rat_pos_lower_bound_of_pos Hε with q Hq,
cases Hq with Hq1 Hq2,
cases pnat_bound Hq1 with p Hp,
existsi nat_of_pnat p,
intros n Hn,
apply lt_of_lt_of_le,
apply H,
apply le.trans,
rotate 1,
apply Hq2,
have Hrat : of_rat (inv p) ≤ of_rat q, from of_rat_le_of_rat_of_le Hp,
apply le.trans,
rotate 1,
exact Hrat,
change 1 / (of_nat n + 1) ≤ of_rat ((1 : ) / (rat_of_pnat p)),
rewrite [of_rat_divide, of_rat_one],
eapply one_div_le_one_div_of_le,
krewrite -of_rat_zero,
apply of_rat_lt_of_rat_of_lt,
apply rat_of_pnat_is_pos,
krewrite [of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat, -real.of_nat_add],
apply real.of_nat_le_of_nat_of_le,
apply le_add_of_le_right,
assumption
end
end
theorem all_conv_seqs_of_converges_to_at {f : M → N} {c : M} {l : N} (Hconv : f ⟶ l at c) :
∀ X : → M, ((∀ n : , ((X n) ≠ c) ∧ (X ⟶ c in )) → ((λ n : , f (X n)) ⟶ l in )) :=
begin
intros X HX,
rewrite [↑converges_to_at at Hconv, ↑converges_to_seq],
intros ε Hε,
cases Hconv Hε with δ Hδ,
cases Hδ with Hδ1 Hδ2,
cases HX 0 with _ HXlim,
cases HXlim Hδ1 with N1 HN1,
existsi N1,
intro n Hn,
apply Hδ2,
split,
apply and.left (HX _),
exact HN1 Hn
end
theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N)
(Hseq : ∀ X : → M, ((∀ n : , ((X n) ≠ c) ∧ (X ⟶ c in )) → ((λ n : , f (X n)) ⟶ l in )))
: f ⟶ l at c :=
by_contradiction
(assume Hnot : ¬ (f ⟶ l at c),
obtain ε Hε, from exists_not_of_not_forall Hnot,
let Hε' := iff.mp not_implies_iff_and_not Hε in
obtain (H1 : ε > 0) H2, from Hε',
have H3 [visible] : ∀ δ : , (δ > 0 → ∃ x' : M, x' ≠ c ∧ dist x' c < δ ∧ dist (f x') l ≥ ε), begin -- tedious!!
intros δ Hδ,
note Hε'' := forall_not_of_not_exists H2,
note H4 := forall_not_of_not_exists H2 δ,
have ¬ (∀ x' : M, x' ≠ c ∧ dist x' c < δ → dist (f x') l < ε), from λ H', H4 (and.intro Hδ H'),
note H5 := exists_not_of_not_forall this,
cases H5 with x' Hx',
existsi x',
note H6 := iff.mp not_implies_iff_and_not Hx',
rewrite and.assoc at H6,
cases H6,
split,
assumption,
cases a_1,
split,
assumption,
apply le_of_not_gt,
assumption
end,
let S : → M → Prop := λ n x, 0 < dist x c ∧ dist x c < 1 / (of_nat n + 1) ∧ dist (f x) l ≥ ε in
have HS [visible] : ∀ n : , ∃ m : M, S n m, begin
intro k,
have Hpos : 0 < of_nat k + 1, from of_nat_succ_pos k,
cases H3 (1 / (k + 1)) (one_div_pos_of_pos Hpos) with x' Hx',
cases Hx' with Hne Hx',
cases Hx' with Hdistl Hdistg,
existsi x',
esimp,
split,
apply dist_pos_of_ne,
assumption,
split,
repeat assumption
end,
let X : → M := λ n, some (HS n) in
have H4 [visible] : ∀ n : , ((X n) ≠ c) ∧ (X ⟶ c in ), from
(take n, and.intro
(begin
note Hspec := some_spec (HS n),
esimp, esimp at Hspec,
cases Hspec,
apply ne_of_dist_pos,
assumption
end)
(begin
apply cnv_real_of_cnv_nat,
intro m,
note Hspec := some_spec (HS m),
esimp, esimp at Hspec,
cases Hspec with Hspec1 Hspec2,
cases Hspec2,
assumption
end)),
have H5 [visible] : (λ n : , f (X n)) ⟶ l in , from Hseq X H4,
begin
note H6 := H5 H1,
cases H6 with Q HQ,
note HQ' := HQ !le.refl,
esimp at HQ',
apply absurd HQ',
apply not_lt_of_ge,
note H7 := some_spec (HS Q),
esimp at H7,
cases H7 with H71 H72,
cases H72,
assumption
end)
end metric_space_M_N
section topology
/- A metric space is a topological space. -/
open set prod topology
variables {V : Type} [Vmet : metric_space V]
include Vmet
definition open_ball (x : V) (ε : ) := {y ∈ univ | dist x y < ε}
theorem open_ball_empty_of_nonpos (x : V) {ε : } (Hε : ε ≤ 0) : open_ball x ε = ∅ :=
begin
apply eq_empty_of_forall_not_mem,
intro y Hy,
note Hlt := and.right Hy,
apply not_lt_of_ge (dist_nonneg x y),
apply lt_of_lt_of_le Hlt Hε
end
theorem radius_pos_of_nonempty {x : V} {ε : } {u : V} (Hu : u ∈ open_ball x ε) : ε > 0 :=
begin
apply lt_of_not_ge,
intro Hge,
note Hop := open_ball_empty_of_nonpos x Hge,
rewrite Hop at Hu,
apply not_mem_empty _ Hu
end
theorem mem_open_ball (x : V) {ε : } (H : ε > 0) : x ∈ open_ball x ε :=
suffices x ∈ univ ∧ dist x x < ε, from this,
and.intro !mem_univ (by rewrite dist_self; assumption)
definition closed_ball (x : V) (ε : ) := {y ∈ univ | dist x y ≤ ε}
theorem closed_ball_eq_comp (x : V) (ε : ) : closed_ball x ε = -{y ∈ univ | dist x y > ε} :=
begin
apply ext,
intro y,
apply iff.intro,
intro Hx,
apply mem_comp,
intro Hxmem,
cases Hxmem with _ Hgt,
cases Hx with _ Hle,
apply not_le_of_gt Hgt Hle,
intro Hx,
note Hx' := not_mem_of_mem_comp Hx,
split,
apply mem_univ,
apply le_of_not_gt,
intro Hgt,
apply Hx',
split,
apply mem_univ,
assumption
end
omit Vmet
definition open_sets_basis (V : Type) [metric_space V] :=
image (λ pair : V × , open_ball (pr1 pair) (pr2 pair)) univ
definition metric_topology [instance] (V : Type) [metric_space V] : topology V :=
topology.generated_by (open_sets_basis V)
include Vmet
theorem open_ball_mem_open_sets_basis (x : V) (ε : ) : (open_ball x ε) ∈ (open_sets_basis V) :=
mem_image !mem_univ rfl
theorem open_ball_open (x : V) (ε : ) : Open (open_ball x ε) :=
by apply generators_mem_topology_generated_by; apply open_ball_mem_open_sets_basis
theorem closed_ball_closed (x : V) {ε : } (H : ε > 0) : closed (closed_ball x ε) :=
begin
apply iff.mpr !closed_iff_Open_comp,
rewrite closed_ball_eq_comp,
rewrite comp_comp,
apply Open_of_forall_exists_Open_nbhd,
intro y Hy,
cases Hy with _ Hxy,
existsi open_ball y (dist x y - ε),
split,
apply open_ball_open,
split,
apply mem_open_ball,
apply sub_pos_of_lt Hxy,
intros y' Hy',
cases Hy' with _ Hxy'd,
rewrite dist_comm at Hxy'd,
split,
apply mem_univ,
apply lt_of_not_ge,
intro Hxy',
apply not_lt_self (dist x y),
exact calc
dist x y ≤ dist x y' + dist y' y : dist_triangle
... ≤ ε + dist y' y : add_le_add_right Hxy'
... < ε + (dist x y - ε) : add_lt_add_left Hxy'd
... = dist x y : by rewrite [add.comm, sub_add_cancel]
end
theorem not_open_of_ex_boundary_pt {U : set V} {x : V} (HxU : x ∈ U)
(Hbd : ∀ ε : , ε > 0 → ∃ v : V, v ∉ U ∧ dist x v < ε) : ¬ Open U :=
begin
intro HUopen,
induction HUopen,
{cases a with pr Hpr,
cases pr with y r,
cases Hpr with _ Hs,
rewrite -Hs at HxU,
have H : dist y x < r, from and.right HxU,
cases Hbd _ (sub_pos_of_lt H) with v Hv,
cases Hv with Hv Hvdist,
apply Hv,
rewrite -Hs,
apply and.intro,
apply mem_univ,
apply lt_of_le_of_lt,
apply dist_triangle,
exact x,
esimp,
exact calc
dist y x + dist x v < dist y x + (r - dist y x) : add_lt_add_left Hvdist
... = r : by rewrite [add.comm, sub_add_cancel]},
{cases Hbd 1 zero_lt_one with v Hv,
cases Hv with Hv _,
exact Hv !mem_univ},
{have Hxs : x ∈ s, from mem_of_mem_inter_left HxU,
have Hxt : x ∈ t, from mem_of_mem_inter_right HxU,
note Hsih := exists_not_of_not_forall (v_0 Hxs),
note Htih := exists_not_of_not_forall (v_1 Hxt),
cases Hsih with ε1 Hε1,
cases Htih with ε2 Hε2,
note Hε1' := iff.mp not_implies_iff_and_not Hε1,
note Hε2' := iff.mp not_implies_iff_and_not Hε2,
cases Hε1' with Hε1p Hε1',
cases Hε2' with Hε2p Hε2',
note Hε1'' := forall_not_of_not_exists Hε1',
note Hε2'' := forall_not_of_not_exists Hε2',
have Hmin : min ε1 ε2 > 0, from lt_min Hε1p Hε2p,
cases Hbd _ Hmin with v Hv,
cases Hv with Hvint Hvdist,
note Hε1v := Hε1'' v,
note Hε2v := Hε2'' v,
cases em (v ∉ s) with Hnm Hmem,
apply Hε1v,
split,
exact Hnm,
apply lt_of_lt_of_le Hvdist,
apply min_le_left,
apply Hε2v,
have Hmem' : v ∈ s, from not_not_elim Hmem,
note Hnm := not_mem_of_mem_of_not_mem_inter_left Hmem' Hvint,
split,
exact Hnm,
apply lt_of_lt_of_le Hvdist,
apply min_le_right},
{have Hex : ∃₀ s ∈ S, x ∈ s, from HxU,
cases Hex with s Hs,
cases Hs with Hs Hxs,
cases exists_not_of_not_forall (v_0 Hs Hxs) with ε Hε,
cases iff.mp not_implies_iff_and_not Hε with Hεp Hv,
cases Hbd _ Hεp with v Hv',
cases Hv' with Hvnm Hdist,
apply Hv,
existsi v,
split,
apply not_mem_of_not_mem_sUnion Hvnm Hs,
exact Hdist}
end
theorem ex_Open_ball_subset_of_Open_of_nonempty {U : set V} (HU : Open U) {x : V} (Hx : x ∈ U) :
∃ (r : ), r > 0 ∧ open_ball x r ⊆ U :=
begin
let balloon := {r ∈ univ | r > 0 ∧ open_ball x r ⊆ U},
cases em (balloon = ∅),
have H : ∀ r : , r > 0 → ∃ v : V, v ∉ U ∧ dist x v < r, begin
intro r Hr,
note Hor := iff.mp not_and_iff_not_or_not (forall_not_of_sep_empty a (mem_univ r)),
note Hor' := or.neg_resolve_left Hor Hr,
apply exists_of_not_forall_not,
intro Hall,
apply Hor',
intro y Hy,
cases iff.mp not_and_iff_not_or_not (Hall y) with Hmem Hge,
apply not_not_elim Hmem,
apply absurd (and.right Hy) Hge
end,
apply absurd HU,
apply not_open_of_ex_boundary_pt Hx H,
cases exists_mem_of_ne_empty a with r Hr,
cases Hr with _ Hr,
cases Hr with Hrpos HxrU,
existsi r,
split,
repeat assumption
end
end topology
section continuity
variables {M N : Type} [Hm : metric_space M] [Hn : metric_space N]
include Hm Hn
open topology set
/- continuity at a point -/
--definition continuous_at (f : M → N) (x : M) :=
--topology.continuous_at f x
-- the ε - δ definition of continuity is equivalent to the topological definition
theorem continuous_at_intro {f : M → N} {x : M}
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
continuous_at f x :=
begin
rewrite ↑continuous_at,
intros U HfU Uopen,
cases ex_Open_ball_subset_of_Open_of_nonempty Uopen HfU with r Hr,
cases Hr with Hr HUr,
cases H Hr with δ Hδ,
cases Hδ with Hδ Hx'δ,
existsi open_ball x δ,
split,
apply mem_open_ball,
exact Hδ,
split,
apply open_ball_open,
intro y Hy,
apply HUr,
cases Hy with y' Hy',
cases Hy' with Hy' Hfy',
cases Hy' with _ Hy',
rewrite dist_comm at Hy',
note Hy'' := Hx'δ Hy',
apply and.intro !mem_univ,
rewrite [-Hfy', dist_comm],
exact Hy''
end
theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε :=
begin
intros ε Hε,
rewrite [↑continuous_at at Hfx],
cases Hfx (open_ball (f x) ε) (mem_open_ball _ Hε) !open_ball_open with V HV,
cases HV with HVx HV,
cases HV with HV HVf,
cases ex_Open_ball_subset_of_Open_of_nonempty HV HVx with δ Hδ,
cases Hδ with Hδ Hδx,
existsi δ,
split,
exact Hδ,
intro x' Hx',
rewrite dist_comm,
apply and.right,
apply HVf,
existsi x',
split,
apply Hδx,
apply and.intro !mem_univ,
rewrite dist_comm,
apply Hx',
apply rfl
end
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
continuous_at f x :=
continuous_at_intro
(take ε, suppose ε > 0,
obtain δ Hδ, from Hf this,
exists.intro δ (and.intro
(and.left Hδ)
(take x', suppose dist x' x < δ,
if Heq : x' = x then
by rewrite [-Heq, dist_self]; assumption
else
(suffices dist x' x < δ, from and.right Hδ x' (and.intro Heq this),
this))))
theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_at f x) :
f ⟶ f x at x :=
take ε, suppose ε > 0,
obtain δ Hδ, from continuous_at_elim Hf this,
exists.intro δ (and.intro
(and.left Hδ)
(take x',
assume H : x' ≠ x ∧ dist x' x < δ,
show dist (f x') (f x) < ε, from and.right Hδ x' (and.right H)))
definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x
theorem converges_seq_comp_of_converges_seq_of_cts [instance] (X : → M) [HX : converges_seq X] {f : M → N}
(Hf : continuous f) :
converges_seq (λ n, f (X n)) :=
begin
cases HX with xlim Hxlim,
existsi f xlim,
rewrite ↑converges_to_seq at *,
intros ε Hε,
let Hcont := (continuous_at_elim (Hf xlim)) Hε,
cases Hcont with δ Hδ,
cases Hxlim (and.left Hδ) with B HB,
existsi B,
intro n Hn,
apply and.right Hδ,
apply HB Hn
end
omit Hn
theorem id_continuous : continuous (λ x : M, x) :=
begin
intros x,
apply continuous_at_intro,
intro ε Hε,
existsi ε,
split,
assumption,
intros,
assumption
end
end continuity
end analysis
/- complete metric spaces -/
structure complete_metric_space [class] (M : Type) extends metricM : metric_space M : Type :=
(complete : ∀ X, @analysis.cauchy M metricM X → @analysis.converges_seq M metricM X)
namespace analysis
proposition complete (M : Type) [cmM : complete_metric_space M] {X : → M} (H : cauchy X) :
converges_seq X :=
complete_metric_space.complete X H
end analysis
/- the reals form a metric space -/
noncomputable definition metric_space_real [instance] : metric_space :=
⦃ metric_space,
dist := λ x y, abs (x - y),
dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end,
eq_of_dist_eq_zero := λ x y, eq_of_abs_sub_eq_zero,
dist_comm := abs_sub,
dist_triangle := abs_sub_le