lean2/src/library/elaborator/elaborator.cpp

1848 lines
77 KiB
C++
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <memory>
#include <vector>
#include <utility>
#include <algorithm>
#include "util/list.h"
#include "util/splay_tree.h"
#include "util/interrupt.h"
#include "kernel/for_each_fn.h"
#include "kernel/formatter.h"
#include "kernel/free_vars.h"
#include "kernel/normalizer.h"
#include "kernel/instantiate.h"
#include "kernel/replace_fn.h"
#include "kernel/builtin.h"
#include "kernel/type_checker.h"
#include "kernel/update_expr.h"
#include "library/printer.h"
#include "library/eq_heq.h"
#include "library/elaborator/elaborator.h"
#include "library/elaborator/elaborator_justification.h"
namespace lean {
static name g_x_name("x");
class elaborator::imp {
typedef splay_tree<name, name_cmp> name_set;
typedef list<unification_constraint> cnstr_list;
typedef list<name> name_list;
typedef list<std::pair<unification_constraint, name_list>> delayed_cnstr_list;
struct state {
metavar_env m_menv;
cnstr_list m_active_cnstrs;
delayed_cnstr_list m_delayed_cnstrs;
name_set m_recently_assigned; // recently assigned metavars
state(metavar_env const & menv, unsigned num_cnstrs, unification_constraint const * cnstrs):
m_menv(menv.copy()),
m_active_cnstrs(to_list(cnstrs, cnstrs + num_cnstrs)) {
}
state(state const & other):
m_menv(other.m_menv.copy()),
m_active_cnstrs(other.m_active_cnstrs),
m_delayed_cnstrs(other.m_delayed_cnstrs),
m_recently_assigned(other.m_recently_assigned) {
}
state & operator=(state const & other) {
m_menv = other.m_menv.copy();
m_active_cnstrs = other.m_active_cnstrs;
m_delayed_cnstrs = other.m_delayed_cnstrs;
m_recently_assigned = other.m_recently_assigned;
return *this;
}
};
/**
\brief Base class for case splits performed by the elaborator.
*/
struct case_split {
justification m_curr_assumption; // object used to justify current split
state m_prev_state;
std::vector<justification> m_failed_justifications; // justifications for failed branches
case_split(state const & prev_state):m_prev_state(prev_state) {}
virtual ~case_split() {}
virtual bool next(imp & owner) = 0;
};
/**
\brief Case-split object for choice constraints.
*/
struct choice_case_split : public case_split {
unsigned m_idx;
unification_constraint m_choice;
choice_case_split(unification_constraint const & c, state const & prev_state):
case_split(prev_state),
m_idx(0),
m_choice(c) {
}
virtual ~choice_case_split() {}
virtual bool next(imp & owner) {
return owner.next_choice_case(*this);
}
};
/**
\brief General purpose case split object
*/
struct generic_case_split : public case_split {
unification_constraint m_constraint;
unsigned m_idx; // current alternative
std::vector<state> m_states; // alternatives
std::vector<justification> m_assumptions; // assumption for each alternative
generic_case_split(unification_constraint const & cnstr, state const & prev_state):
case_split(prev_state),
m_constraint(cnstr),
m_idx(0) {
}
virtual ~generic_case_split() {}
virtual bool next(imp & owner) {
return owner.next_generic_case(*this);
}
void push_back(state const & s, justification const & tr) {
m_states.push_back(s);
m_assumptions.push_back(tr);
}
};
struct plugin_case_split : public case_split {
unification_constraint m_constraint;
std::unique_ptr<elaborator_plugin::result> m_alternatives;
plugin_case_split(unification_constraint const & cnstr, std::unique_ptr<elaborator_plugin::result> & r, state const & prev_state):
case_split(prev_state),
m_constraint(cnstr),
m_alternatives(std::move(r)) {
}
virtual ~plugin_case_split() {}
virtual bool next(imp & owner) {
return owner.next_plugin_case(*this);
}
};
ro_environment m_env;
type_inferer m_type_inferer;
normalizer m_normalizer;
state m_state;
std::vector<std::unique_ptr<case_split>> m_case_splits;
std::shared_ptr<elaborator_plugin> m_plugin;
unsigned m_next_id;
justification m_conflict;
bool m_first;
level m_U; // universe U used for builtin kernel axioms
// options
bool m_use_justifications;
bool m_use_normalizer;
bool m_assume_injectivity;
void set_options(options const &) {
m_use_justifications = true;
m_use_normalizer = true;
m_assume_injectivity = true;
}
justification mk_assumption() {
unsigned id = m_next_id;
m_next_id++;
return mk_assumption_justification(id);
}
void push_front(cnstr_list & clist, unification_constraint const & c) {
// std::cout << "PUSHING: "; display(std::cout, c); std::cout << "\n";
clist = cons(c, clist);
}
/** \brief Add given constraint to active list */
void push_active(unification_constraint const & c) {
push_front(m_state.m_active_cnstrs, c);
}
/** \brief Push all contraints in the collection to the active list */
void push_active(buffer<unification_constraint> const & cs) {
for (auto const & c : cs)
push_active(c);
}
void collect_mvars(expr const & e, name_set & r) {
for_each(e, [&](expr const & m, unsigned) {
if (is_metavar(m) && !r.contains(metavar_name(m))) {
r.insert(metavar_name(m));
for (auto const & entry : metavar_lctx(m)) {
if (entry.is_inst())
collect_mvars(entry.v(), r);
}
}
return true;
});
}
/** \brief Collect metavars in \c c */
name_list collect_mvars(unification_constraint const & c) {
name_set s;
auto proc = [&](expr const & e) { return collect_mvars(e, s); };
switch (c.kind()) {
case unification_constraint_kind::Eq:
proc(eq_lhs(c)); proc(eq_rhs(c)); break;
case unification_constraint_kind::Convertible:
proc(convertible_from(c)); proc(convertible_to(c)); break;
case unification_constraint_kind::Max:
proc(max_lhs1(c)); proc(max_lhs2(c)); proc(max_rhs(c)); break;
case unification_constraint_kind::Choice:
lean_unreachable(); // we never delay Choice
break;
}
return s.fold([](name const & n, name_list const & l) { return cons(n, l); }, name_list());
}
/** \brief Add given constraint to the delayed list */
void push_delayed(unification_constraint const & c) {
m_state.m_delayed_cnstrs.emplace_front(c, collect_mvars(c));
}
/** \brief Return true iff \c m is an assigned metavariable in the current state */
bool is_assigned(expr const & m) const {
lean_assert(is_metavar(m));
return m_state.m_menv->is_assigned(m);
}
/** \brief Return the substitution (and justification) for an assigned metavariable */
std::pair<expr, justification> get_subst_jst(expr const & m) const {
lean_assert(is_metavar(m));
lean_assert(is_assigned(m));
return *(m_state.m_menv->get_subst_jst(m));
}
/**
\brief Return true iff \c e contains the metavariable \c m.
The substitutions in the current state are taken into account.
*/
bool has_metavar(expr const & e, expr const & m) const {
return m_state.m_menv->has_metavar(e, m);
}
static bool has_metavar(expr const & e) {
return ::lean::has_metavar(e);
}
/**
\brief Return true iff \c e contains an assigned metavariable in
the current state.
*/
bool has_assigned_metavar(expr const & e) const {
return m_state.m_menv->has_assigned_metavar(e);
}
/** \brief Return true if \c a is of the form <tt>(?m ...)</tt> */
static bool is_meta_app(expr const & a) {
return is_app(a) && is_metavar(arg(a, 0));
}
/** \brief Return true iff \c a is a metavariable or if \c a is an application where the function is a metavariable */
static bool is_meta(expr const & a) {
return is_metavar(a) || is_meta_app(a);
}
/** \brief Return true iff \c a is a metavariable and has a meta context. */
static bool is_metavar_with_context(expr const & a) {
return is_metavar(a) && has_local_context(a);
}
/** \brief Return true if \c a is of the form <tt>(?m[...] ...)</tt> */
static bool is_meta_app_with_context(expr const & a) {
return is_meta_app(a) && has_local_context(arg(a, 0));
}
/** \brief Return true iff \c a is a proposition */
bool is_proposition(expr const & a, context const & ctx) {
if ((is_metavar(a)) ||
(is_app(a) && is_metavar(arg(a, 0))) ||
(is_abstraction(a) && (is_metavar(abst_domain(a)) || is_metavar(abst_body(a))))) {
// Avoid exception at m_type_inferer.
// Throw is expensive in C++.
return false;
}
try {
return m_type_inferer.is_proposition(a, ctx);
} catch (...) {
return false;
}
}
static expr mk_lambda(name const & n, expr const & d, expr const & b) {
return ::lean::mk_lambda(n, d, b);
}
/**
\brief Create the term (fun (x_0 : types[0]) ... (x_{n-1} : types[n-1]) body)
*/
expr mk_lambda(buffer<expr> const & types, expr const & body) {
expr r = body;
unsigned i = types.size();
while (i > 0) {
--i;
r = mk_lambda(i == 0 ? g_x_name : name(g_x_name, i), types[i], r);
}
return r;
}
/**
\brief Return (f x_{num_vars - 1} ... x_0)
*/
expr mk_app_vars(expr const & f, unsigned num_vars) {
buffer<expr> args;
args.push_back(f);
unsigned i = num_vars;
while (i > 0) {
--i;
args.push_back(mk_var(i));
}
return mk_app(args);
}
/**
\brief Push a new constraint to the active_cnstrs.
If \c is_eq is true, then a equality constraint is created, otherwise a convertability constraint is created.
*/
void push_new_constraint(cnstr_list & active_cnstrs, bool is_eq,
context const & new_ctx, expr const & new_a, expr const & new_b, justification const & new_jst) {
if (new_a == new_b)
return; // trivial constraint
if (is_eq)
push_front(active_cnstrs, mk_eq_constraint(new_ctx, new_a, new_b, new_jst));
else
push_front(active_cnstrs, mk_convertible_constraint(new_ctx, new_a, new_b, new_jst));
}
/**
\brief Push a new equality constraint <tt>new_ctx |- new_a == new_b</tt> into the active_cnstrs using
justification \c new_jst.
*/
void push_new_eq_constraint(cnstr_list & active_cnstrs,
context const & new_ctx, expr const & new_a, expr const & new_b, justification const & new_jst) {
push_new_constraint(active_cnstrs, true, new_ctx, new_a, new_b, new_jst);
}
void push_new_eq_constraint(context const & new_ctx, expr const & new_a, expr const & new_b, justification const & new_jst) {
push_new_eq_constraint(m_state.m_active_cnstrs, new_ctx, new_a, new_b, new_jst);
}
/**
\brief Auxiliary method for pushing a new constraint to the current active list.
If \c is_eq is true, then a equality constraint is created, otherwise a convertability constraint is created.
*/
void push_new_constraint(bool is_eq, context const & new_ctx, expr const & new_a, expr const & new_b, justification const & new_jst) {
push_new_constraint(m_state.m_active_cnstrs, is_eq, new_ctx, new_a, new_b, new_jst);
}
/**
\brief Auxiliary method for pushing a new constraint to the current active constraint list.
The new constraint is based on the constraint \c c. The constraint \c c may be a equality or convertability constraint.
The update is justified by \c new_jst.
*/
void push_updated_constraint(unification_constraint const & c, expr const & new_a, expr const & new_b, justification const & new_jst) {
push_new_constraint(m_state.m_active_cnstrs, is_eq(c), get_context(c), new_a, new_b, new_jst);
}
/**
\brief Auxiliary method for pushing a new constraint to the current active constraint list.
The new constraint is based on the constraint \c c. The constraint \c c may be a equality or convertability constraint.
The flag \c is_lhs says if the left-hand-side or right-hand-side are being updated with \c new_a.
The update is justified by \c new_jst.
*/
void push_updated_constraint(unification_constraint const & c, bool is_lhs, expr const & new_a, justification const & new_jst) {
lean_assert(is_eq(c) || is_convertible(c));
if (is_eq(c)) {
if (is_lhs)
push_updated_constraint(c, new_a, eq_rhs(c), new_jst);
else
push_updated_constraint(c, eq_lhs(c), new_a, new_jst);
} else {
if (is_lhs)
push_updated_constraint(c, new_a, convertible_to(c), new_jst);
else
push_updated_constraint(c, convertible_from(c), new_a, new_jst);
}
}
/**
\brief Auxiliary method for pushing a new constraint to the constraint queue.
The new constraint is obtained from \c c by one or more normalization steps that produce \c new_a and \c new_b
*/
void push_normalized_constraint(unification_constraint const & c, expr const & new_a, expr const & new_b) {
push_updated_constraint(c, new_a, new_b, justification(new normalize_justification(c)));
}
justification mk_failure_justification(unification_constraint const & c) {
return justification(new unification_failure_justification(c, m_state.m_menv.copy()));
}
/**
\brief Assign \c v to \c m with justification \c tr in the current state.
*/
bool assign(expr const & m, expr const & v, unification_constraint const & c, bool is_lhs) {
lean_assert(is_metavar(m));
if (instantiate_metavars(!is_lhs, v, c)) // make sure v does not have assigned metavars
return true;
context const & ctx = get_context(c);
justification jst(new assignment_justification(c));
metavar_env const & menv = m_state.m_menv;
if (!menv->assign(m, v, jst)) {
m_conflict = mk_failure_justification(c);
return false;
}
if (menv->has_type(m)) {
buffer<unification_constraint> ucs;
expr tv = m_type_inferer(v, ctx, menv, ucs);
push_active(ucs);
justification new_jst(new typeof_mvar_justification(ctx, m, menv->get_type(m), tv, jst));
push_active(mk_convertible_constraint(ctx, tv, menv->get_type(m), new_jst));
}
m_state.m_recently_assigned.insert(metavar_name(m));
return true;
}
bool process(unification_constraint const & c) {
switch (c.kind()) {
case unification_constraint_kind::Eq: return process_eq(c);
case unification_constraint_kind::Convertible: return process_convertible(c);
case unification_constraint_kind::Max: return process_max(c);
case unification_constraint_kind::Choice: return process_choice(c);
}
lean_unreachable(); // LCOV_EXCL_LINE
return true;
}
bool process_eq(unification_constraint const & c) {
return process_eq_convertible(get_context(c), eq_lhs(c), eq_rhs(c), c);
}
bool process_convertible(unification_constraint const & c) {
return process_eq_convertible(get_context(c), convertible_from(c), convertible_to(c), c);
}
/**
Process <tt>ctx |- a == b</tt> and <tt>ctx |- a << b</tt> when:
1- \c a is an assigned metavariable
2- \c a is a unassigned metavariable without a metavariable context.
3- \c a is a unassigned metavariable of the form <tt>?m[lift:s:n, ...]</tt>, and \c b does not have
a free variable in the range <tt>[s, s+n)</tt>.
4- \c a is an application of the form <tt>(?m ...)</tt> where ?m is an assigned metavariable.
*/
enum status { Processed, Failed, Continue };
status process_metavar(unification_constraint const & c, expr const & a, expr const & b, bool is_lhs) {
context const & ctx = get_context(c);
lean_assert(!(is_metavar(a) && is_assigned(a)));
lean_assert(!(is_metavar(b) && is_assigned(b)));
if (is_metavar(a)) {
if (!has_local_context(a)) {
// Case 2
if (has_metavar(b, a)) {
m_conflict = mk_failure_justification(c);
return Failed;
} else if (is_eq(c) || is_proposition(b, ctx)) {
// At this point, we only assign metavariables if the constraint is an equational constraint,
// or b is a proposition.
// It is important to handle propositions since we don't want to normalize them.
// The normalization process destroys the structure of the proposition.
return assign(a, b, c, is_lhs) ? Processed : Failed;
}
} else {
if (!is_metavar(b) && has_metavar(b, a)) {
m_conflict = mk_failure_justification(c);
return Failed;
}
local_entry const & me = head(metavar_lctx(a));
if (me.is_lift()) {
// Case 3
// a is of the form ?m[lift:s:n]
unsigned s = me.s();
unsigned n = me.n();
// Let ctx be of the form
// [ce_{m-1}, ..., ce_{s+n}, ce_{s+n-1}, ..., ce_s, ce_{s-1}, ..., ce_0]
// Then, we reduce
// [ce_{m-1}, ..., ce_{s+n}, ce_{s+n-1}, ..., ce_s, ce_{s-1}, ..., ce_0] |- ?m[lift:s:n] == b
// to
// [ce_{m-1}, ..., ce_{s+n}, lower(ce_{s-1}, n, n), ..., lower(ce_0, s + n - 1, n)] |- ?m == lower(b, s + n, n)
//
// Remark: we have to check if the lower operations are applicable using the operation has_free_var.
//
if (!has_free_var(b, s, s + n, m_state.m_menv)) {
optional<context> new_ctx = ctx.remove(s, n, m_state.m_menv); // method remove will lower the entries ce_0, ..., ce_{s-1}
if (!new_ctx)
return Continue; // rule is not applicable because we cannot lower the entries.
justification new_jst(new normalize_justification(c));
expr new_a = pop_meta_context(a);
expr new_b = lower_free_vars(b, s + n, n, m_state.m_menv);
if (!is_lhs)
swap(new_a, new_b);
push_new_constraint(is_eq(c), *new_ctx, new_a, new_b, new_jst);
return Processed;
} else if (!has_metavar(b)) {
// Failure, there is no way to unify
// ?m[lift:s:n, ...] with a term that contains variables in [s, s+n]
m_conflict = mk_failure_justification(c);
return Failed;
}
}
}
}
if (is_app(a) && is_metavar(arg(a, 0)) && is_assigned(arg(a, 0))) {
// Case 4
auto s_j = get_subst_jst(arg(a, 0));
justification new_jst(new substitution_justification(c, s_j.second));
expr new_f = s_j.first;
expr new_a = update_app(a, 0, new_f);
if (m_state.m_menv->beta_reduce_metavar_application())
new_a = head_beta_reduce(new_a);
push_updated_constraint(c, is_lhs, new_a, new_jst);
return Processed;
}
return Continue;
}
justification mk_subst_justification(unification_constraint const & c, buffer<justification> const & subst_justifications) {
if (subst_justifications.size() == 1) {
return justification(new substitution_justification(c, subst_justifications[0]));
} else {
return justification(new multi_substitution_justification(c, subst_justifications.size(), subst_justifications.data()));
}
}
/**
\brief Instantiate the assigned metavariables in \c a, and store the justifications
in \c jsts.
*/
expr instantiate_metavars(expr const & a, buffer<justification> & jsts) {
lean_assert(has_assigned_metavar(a));
return m_state.m_menv->instantiate_metavars(a, jsts);
}
/**
\brief Return true iff \c a contains instantiated variables. If this is the case,
then constraint \c c is updated with a new \c a s.t. all metavariables of \c a
are instantiated.
\remark if \c is_lhs is true, then we are considering the left-hand-side of the constraint \c c.
*/
bool instantiate_metavars(bool is_lhs, expr const & a, unification_constraint const & c) {
lean_assert(is_eq(c) || is_convertible(c));
lean_assert(!is_eq(c) || !is_lhs || is_eqp(eq_lhs(c), a));
lean_assert(!is_eq(c) || is_lhs || is_eqp(eq_rhs(c), a));
lean_assert(!is_convertible(c) || !is_lhs || is_eqp(convertible_from(c), a));
lean_assert(!is_convertible(c) || is_lhs || is_eqp(convertible_to(c), a));
if (has_assigned_metavar(a)) {
buffer<justification> jsts;
expr new_a = instantiate_metavars(a, jsts);
justification new_jst = mk_subst_justification(c, jsts);
push_updated_constraint(c, is_lhs, new_a, new_jst);
return true;
} else {
return false;
}
}
/** \brief Unfold let-expression */
void process_let(expr & a) {
if (is_let(a))
a = instantiate(let_body(a), let_value(a), m_state.m_menv);
}
/** \brief Replace variables by their definition if the context contains it. */
void process_var(context const & ctx, expr & a) {
if (is_var(a)) {
auto e = find(ctx, var_idx(a));
if (e && e->get_body())
a = lift_free_vars(*(e->get_body()), var_idx(a) + 1, m_state.m_menv);
}
}
expr normalize(context const & ctx, expr const & a) {
return m_normalizer(a, ctx, m_state.m_menv);
}
void process_app(context const & ctx, expr & a) {
if (is_app(a)) {
expr f = arg(a, 0);
if (is_value(f) && m_use_normalizer) {
// if f is a semantic attachment, we keep normalizing children from
// left to right until the semantic attachment is applicable
buffer<expr> new_args;
new_args.append(num_args(a), &(arg(a, 0)));
bool modified = false;
expr r;
for (unsigned i = 1; i < new_args.size(); i++) {
expr const & curr = new_args[i];
expr new_curr = normalize(ctx, curr);
if (curr != new_curr) {
modified = true;
new_args[i] = new_curr;
if (optional<expr> r = to_value(f).normalize(new_args.size(), new_args.data())) {
a = *r;
return;
}
}
}
if (optional<expr> r = to_value(f).normalize(new_args.size(), new_args.data())) {
a = *r;
return;
}
if (modified) {
a = mk_app(new_args);
return;
}
} else {
process_let(f);
process_var(ctx, f);
f = head_beta_reduce(f);
a = update_app(a, 0, f);
a = head_beta_reduce(a);
}
}
}
void process_eq(context const & ctx, expr & a) {
if (is_eq(a) && m_use_normalizer) {
a = normalize(ctx, a);
}
}
expr normalize_step(context const & ctx, expr const & a) {
expr new_a = a;
process_let(new_a);
process_var(ctx, new_a);
process_app(ctx, new_a);
process_eq(ctx, new_a);
return new_a;
}
int get_const_weight(expr const & a) {
lean_assert(is_constant(a));
optional<object> obj = m_env->find_object(const_name(a));
if (should_unfold(obj))
return obj->get_weight();
else
return -1;
}
/**
\brief Return a number >= 0 if \c a is a defined constant or the application of a defined constant.
In this case, the value is the weight of the definition.
*/
int get_unfolding_weight(expr const & a) {
if (is_constant(a))
return get_const_weight(a);
else if (is_app(a) && is_constant(arg(a, 0)))
return get_const_weight(arg(a, 0));
else
return -1;
}
expr unfold(expr const & a) {
lean_assert(is_constant(a) || (is_app(a) && is_constant(arg(a, 0))));
if (is_constant(a)) {
lean_assert(m_env->find_object(const_name(a)));
return m_env->find_object(const_name(a))->get_value();
} else {
lean_assert(m_env->find_object(const_name(arg(a, 0))));
return update_app(a, 0, m_env->find_object(const_name(arg(a, 0)))->get_value());
}
}
bool normalize_head(expr a, expr b, unification_constraint const & c) {
context const & ctx = get_context(c);
bool modified = false;
while (true) {
check_interrupted();
expr new_a = normalize_step(ctx, a);
expr new_b = normalize_step(ctx, b);
if (new_a == a && new_b == b) {
int w_a = get_unfolding_weight(a);
int w_b = get_unfolding_weight(b);
if (w_a >= 0 || w_b >= 0) {
if (w_a >= w_b)
new_a = unfold(a);
if (w_b >= w_a)
new_b = unfold(b);
if (new_a == a && new_b == b)
break;
} else {
break;
}
}
modified = true;
a = new_a;
b = new_b;
if (a == b) {
return true;
}
}
if (modified) {
push_normalized_constraint(c, a, b);
return true;
} else {
return false;
}
}
/** \brief Return true iff the variable with id \c vidx has a body/definition in the context \c ctx. */
static bool has_body(context const & ctx, unsigned vidx) {
auto e = find(ctx, vidx);
return e && e->get_body();
}
/**
\brief Return true iff all arguments of the application \c a are variables that do
not have a definition in \c ctx.
*/
static bool are_args_vars(context const & ctx, expr const & a) {
lean_assert(is_app(a));
for (unsigned i = 1; i < num_args(a); i++) {
if (!is_var(arg(a, i)))
return false;
if (has_body(ctx, var_idx(arg(a, i))))
return false;
}
return true;
}
/**
\brief Return true iff \c a may be an actual lower bound for a convertibility constraint.
That is, if the result is false, it means the convertability constraint is essentially
an equality constraint.
*/
bool is_actual_lower(expr const & a) {
return is_type(a) || is_metavar(a) || is_bool(a) || (is_pi(a) && is_actual_lower(abst_body(a)));
}
/**
\brief Return true iff \c a may be an actual upper bound for a convertibility constraint.
That is, if the result is false, it means the convertability constraint is essentially
an equality constraint.
*/
bool is_actual_upper(expr const & a) {
return is_type(a) || is_metavar(a) || (is_pi(a) && is_actual_upper(abst_body(a)));
}
/**
\brief See \c process_simple_ho_match
*/
bool is_simple_ho_match(context const & ctx, expr const & a, expr const & b, bool is_lhs, unification_constraint const & c) {
return is_meta_app(a) && !has_local_context(arg(a, 0)) && are_args_vars(ctx, a) && closed(b) &&
(is_eq(c) || (is_lhs && !is_actual_upper(b)) || (!is_lhs && !is_actual_lower(b)));
}
optional<expr> try_get_type(context const & ctx, expr const & e) {
try {
return some_expr(m_type_inferer(e, ctx));
} catch (...) {
return none_expr();
}
}
/**
\brief Return true iff ctx |- a == b is a "simple" higher-order matching constraint. By simple, we mean
a constraint of the form
ctx |- (?m x) == c
The constraint is solved by assigning ?m to (fun (x : T), c).
*/
bool process_simple_ho_match(context const & ctx, expr const & a, expr const & b, bool is_lhs, unification_constraint const & c) {
// Solve constraint of the form
// ctx |- (?m x) == c
// using imitation
if (is_simple_ho_match(ctx, a, b, is_lhs, c)) {
expr m = arg(a, 0);
buffer<expr> types;
for (unsigned i = 1; i < num_args(a); i++) {
optional<expr> d = try_get_type(ctx, arg(a, i));
if (d)
types.push_back(*d);
else
return false;
}
justification new_jst(new destruct_justification(c));
expr s = mk_lambda(types, b);
if (!is_lhs)
swap(m, s);
push_new_eq_constraint(ctx, m, s, new_jst);
return true;
} else {
return false;
}
}
/**
\brief Auxiliary method for \c process_meta_app. Add new case-splits to new_cs
*/
void process_meta_app_core(std::unique_ptr<generic_case_split> & new_cs, expr const & a, expr const & b, bool is_lhs,
unification_constraint const & c) {
lean_assert(is_meta_app(a));
context const & ctx = get_context(c);
metavar_env & menv = m_state.m_menv;
expr f_a = arg(a, 0);
lean_assert(is_metavar(f_a));
unsigned num_a = num_args(a);
buffer<expr> arg_types;
buffer<unification_constraint> ucs;
for (unsigned i = 1; i < num_a; i++) {
arg_types.push_back(m_type_inferer(arg(a, i), ctx, menv, ucs));
push_active(ucs);
}
// Add projections
for (unsigned i = 1; i < num_a; i++) {
// Assign f_a <- fun (x_1 : T_0) ... (x_{num_a-1} : T_{num_a-1}), x_i
state new_state(m_state);
justification new_assumption = mk_assumption();
expr proj = mk_lambda(arg_types, mk_var(num_a - i - 1));
expr new_a = arg(a, i);
expr new_b = b;
if (!is_lhs)
swap(new_a, new_b);
push_new_constraint(new_state.m_active_cnstrs, is_eq(c), ctx, new_a, new_b, new_assumption);
push_new_eq_constraint(new_state.m_active_cnstrs, ctx, f_a, proj, new_assumption);
new_cs->push_back(new_state, new_assumption);
}
// Add imitation
state new_state(m_state);
justification new_assumption = mk_assumption();
expr imitation;
lean_assert(arg_types.size() == num_a - 1);
if (is_app(b)) {
// Imitation for applications
expr f_b = arg(b, 0);
unsigned num_b = num_args(b);
// Assign f_a <- fun (x_1 : T_1) ... (x_{num_a} : T_{num_a}), f_b (h_1 x_1 ... x_{num_a}) ... (h_{num_b} x_1 ... x_{num_a})
// New constraints (h_i a_1 ... a_{num_a}) == arg(b, i)
buffer<expr> imitation_args; // arguments for the imitation
imitation_args.push_back(lift_free_vars(f_b, 0, num_a - 1, new_state.m_menv));
for (unsigned i = 1; i < num_b; i++) {
expr h_i = new_state.m_menv->mk_metavar(ctx);
imitation_args.push_back(mk_app_vars(add_lift(h_i, 0, num_a - 1), num_a - 1));
push_new_eq_constraint(new_state.m_active_cnstrs, ctx, update_app(a, 0, h_i), arg(b, i), new_assumption);
}
imitation = mk_lambda(arg_types, mk_app(imitation_args));
} else if (is_eq(b)) {
// Imitation for equality
// Assign f_a <- fun (x_1 : T_1) ... (x_{num_a} : T_{num_a}), (h_1 x_1 ... x_{num_a}) = (h_2 x_1 ... x_{num_a})
// New constraints (h_1 a_1 ... a_{num_a}) == eq_lhs(b)
// (h_2 a_1 ... a_{num_a}) == eq_rhs(b)
expr h_1 = new_state.m_menv->mk_metavar(ctx);
expr h_2 = new_state.m_menv->mk_metavar(ctx);
push_new_eq_constraint(new_state.m_active_cnstrs, ctx, update_app(a, 0, h_1), eq_lhs(b), new_assumption);
push_new_eq_constraint(new_state.m_active_cnstrs, ctx, update_app(a, 0, h_2), eq_rhs(b), new_assumption);
imitation = mk_lambda(arg_types, mk_eq(mk_app_vars(add_lift(h_1, 0, num_a - 1), num_a - 1), mk_app_vars(add_lift(h_2, 0, num_a - 1), num_a - 1)));
} else if (is_abstraction(b)) {
// Imitation for lambdas and Pis
// Assign f_a <- fun (x_1 : T_1) ... (x_{num_a} : T_{num_a}),
// fun (x_b : (?h_1 x_1 ... x_{num_a})), (?h_2 x_1 ... x_{num_a} x_b)
// New constraints (h_1 a_1 ... a_{num_a}) == abst_domain(b)
// (h_2 a_1 ... a_{num_a} x_b) == abst_body(b)
expr h_1 = new_state.m_menv->mk_metavar(ctx);
context new_ctx = extend(ctx, abst_name(b), abst_domain(b));
expr h_2 = new_state.m_menv->mk_metavar(extend(ctx, abst_name(b), abst_domain(b)));
push_new_eq_constraint(new_state.m_active_cnstrs, ctx, update_app(a, 0, h_1), abst_domain(b), new_assumption);
push_new_eq_constraint(new_state.m_active_cnstrs, new_ctx,
mk_app(update_app(lift_free_vars(a, 1), 0, h_2), mk_var(0)), abst_body(b), new_assumption);
imitation = mk_lambda(arg_types, update_abstraction(b, mk_app_vars(add_lift(h_1, 0, num_a - 1), num_a - 1), mk_app_vars(add_lift(h_2, 1, num_a - 1), num_a)));
} else {
// "Dumb imitation" aka the constant function
// Assign f_a <- fun (x_1 : T_1) ... (x_{num_a} : T_{num_a}), b
imitation = mk_lambda(arg_types, lift_free_vars(b, 0, num_a - 1, new_state.m_menv));
}
push_new_eq_constraint(new_state.m_active_cnstrs, ctx, f_a, imitation, new_assumption);
new_cs->push_back(new_state, new_assumption);
}
/**
\brief Process a constraint <tt>ctx |- a = b</tt> where \c a is of the form <tt>(?m ...)</tt>.
We perform a "case split" using "projection" or "imitation". See Huet&Lang's paper on higher order matching
for further details.
*/
bool process_meta_app(expr const & a, expr const & b, bool is_lhs, unification_constraint const & c,
bool flex_flex = false, bool local_ctx = false) {
if (!is_meta_app(a))
return false;
if (!local_ctx && has_local_context(arg(a, 0)))
return false;
if (!flex_flex) {
if (is_meta_app(b))
return false;
if (is_abstraction(b) && is_meta_app(abst_domain(b)) && is_meta_app(abst_body(b)))
return false;
}
if (!(is_eq(c) || (is_lhs && !is_actual_upper(b)) || (!is_lhs && !is_actual_lower(b))))
return false;
std::unique_ptr<generic_case_split> new_cs(new generic_case_split(c, m_state));
process_meta_app_core(new_cs, a, b, is_lhs, c);
if (flex_flex && is_meta_app(b))
process_meta_app_core(new_cs, b, a, !is_lhs, c);
bool r = new_cs->next(*this);
lean_assert(r);
m_case_splits.push_back(std::move(new_cs));
return r;
}
/** \brief Return true if \c a is of the form ?m[inst:i t, ...] */
bool is_metavar_inst(expr const & a) const {
return is_metavar(a) && has_local_context(a) && head(metavar_lctx(a)).is_inst();
}
/** \brief Return true if \c a is of the form ?m[lift:s:n, ...] */
bool is_metavar_lift(expr const & a) const {
return is_metavar(a) && has_local_context(a) && head(metavar_lctx(a)).is_lift();
}
/**
\brief Collect possible solutions for ?m given a constraint of the form
ctx |- ?m[lctx] == b
where b is a Constant, Type, Value or Variable.
We only need the local context \c lctx and \c b for computing the set of possible solutions.
The result is stored in \c solutions.
We may have more than one solution. Here is an example:
?m[inst:3:b, lift:1:1, inst:2:b] == b
The possible solutions is the set of solutions for
1- ?m[lift:1:1, inst:2:b] == #3
2- ?m[lift:1:1, inst:2:b] == b
The solutions for constraints 1 and 2 are the solutions for
1.1- ?m[inst:2:b] == #2
2.1- ?m[inst:2:b] == b
And 1.1 has two possible solutions
1.1.1 ?m == #3
1.1.2 ?m == b
And 2.1 has also two possible solutions
2.1.1 ?m == #2
2.1.2 ?m == b
Thus, the resulting set of solutions is {#3, b, #2}
*/
void collect_metavar_solutions(local_context const & lctx, expr const & b, buffer<expr> & solutions) {
lean_assert(is_constant(b) || is_type(b) || is_value(b) || is_var(b));
if (lctx) {
local_entry const & e = head(lctx);
if (e.is_inst()) {
if (e.v() == b || has_metavar(e.v())) {
// There is an extra possible solution #{e.s()}
// If e.v() has metavariables, then it may become equal to b.
collect_metavar_solutions(tail(lctx), mk_var(e.s()), solutions);
}
if (is_var(b) && var_idx(b) >= e.s()) {
collect_metavar_solutions(tail(lctx), mk_var(var_idx(b) + 1), solutions);
} else {
collect_metavar_solutions(tail(lctx), b, solutions);
}
} else {
lean_assert(e.is_lift());
if (is_var(b) && var_idx(b) >= e.s() + e.n()) {
collect_metavar_solutions(tail(lctx), mk_var(var_idx(b) - e.n()), solutions);
} else {
collect_metavar_solutions(tail(lctx), b, solutions);
}
}
} else {
lean_assert(length(lctx) == 0);
if (std::find(solutions.begin(), solutions.end(), b) == solutions.end())
solutions.push_back(b); // insert new solution
}
}
/**
\brief Return true if the local context contains a metavariable.
*/
bool local_context_has_metavar(local_context const & lctx) {
for (auto const & e : lctx) {
if (e.is_inst() && has_metavar(e.v()))
return true;
}
return false;
}
/**
\brief Solve a constraint of the form
ctx |- a == b
where
a is of the form ?m[...] i.e., metavariable with a non-empty local context.
b is an abstraction
We solve the constraint by assigning a to an abstraction with fresh metavariables.
*/
void imitate_abstraction(expr const & a, expr const & b, unification_constraint const & c) {
lean_assert(is_metavar(a));
lean_assert(is_abstraction(b));
lean_assert(!is_assigned(a));
lean_assert(has_local_context(a));
// imitate
push_active(c);
// a <- (fun x : ?h1, ?h2) or (Pi x : ?h1, ?h2)
// ?h1 is in the same context where 'a' was defined
// ?h2 is in the context of 'a' + domain of b
expr m = mk_metavar(metavar_name(a));
context ctx_m = m_state.m_menv->get_context(m);
expr h_1 = m_state.m_menv->mk_metavar(ctx_m);
expr h_2 = m_state.m_menv->mk_metavar(extend(ctx_m, abst_name(b), abst_domain(b)));
expr imitation = update_abstraction(b, h_1, h_2);
justification new_jst(new imitation_justification(c));
push_new_constraint(true, ctx_m, m, imitation, new_jst);
}
/**
\brief Similar to imitate_abstraction, but b is an application, where the function
is a Variable, Constant or Value.
*/
void imitate_application(expr const & a, expr const & b, unification_constraint const & c) {
lean_assert(is_metavar(a));
lean_assert(is_app(b) && (is_var(arg(b, 0)) || is_constant(arg(b, 0)) || is_value(arg(b, 0))));
lean_assert(!is_assigned(a));
lean_assert(has_local_context(a));
// Create a fresh meta variable for each argument of b.
// The new metavariables have the same context of a.
expr m = mk_metavar(metavar_name(a));
context ctx_m = m_state.m_menv->get_context(m);
expr f_b = arg(b, 0);
buffer<expr> new_args;
new_args.push_back(expr()); // save space.
unsigned num = num_args(b);
for (unsigned i = 1; i < num; i++)
new_args.push_back(m_state.m_menv->mk_metavar(ctx_m));
// We may have many different imitations.
local_context lctx = metavar_lctx(a);
buffer<expr> solutions;
collect_metavar_solutions(lctx, f_b, solutions);
lean_assert(solutions.size() >= 1);
if (solutions.size() == 1) {
new_args[0] = solutions[0];
expr imitation = mk_app(new_args);
justification new_jst(new imitation_justification(c));
push_active(c);
push_new_constraint(true, ctx_m, m, imitation, new_jst);
} else {
// More than one solution. We must create a case-split.
std::unique_ptr<generic_case_split> new_cs(new generic_case_split(c, m_state));
for (auto s : solutions) {
new_args[0] = s;
expr imitation = mk_app(new_args);
state new_state(m_state);
justification new_assumption = mk_assumption();
push_front(new_state.m_active_cnstrs, c);
push_new_eq_constraint(new_state.m_active_cnstrs, ctx_m, m, imitation, new_assumption);
new_cs->push_back(new_state, new_assumption);
}
lean_verify(new_cs->next(*this));
m_case_splits.push_back(std::move(new_cs));
}
}
/**
\brief Similar to imitate_abstraction, but b is a heterogeneous equality.
*/
void imitate_equality(expr const & a, expr const & b, unification_constraint const & c) {
lean_assert(is_metavar(a));
static_cast<void>(b); // this line is just to avoid a warning, b is only used in an assertion
lean_assert(is_eq(b));
lean_assert(!is_assigned(a));
lean_assert(has_local_context(a));
// imitate
push_active(c);
// Create a fresh meta variable for the lhs and rhs of b.
// The new metavariables have the same context of a.
expr m = mk_metavar(metavar_name(a));
context ctx_m = m_state.m_menv->get_context(m);
expr h1 = m_state.m_menv->mk_metavar(ctx_m);
expr h2 = m_state.m_menv->mk_metavar(ctx_m);
expr imitation = mk_eq(h1, h2);
justification new_jst(new imitation_justification(c));
push_new_constraint(true, ctx_m, m, imitation, new_jst);
}
/**
\brief Process a constraint <tt>ctx |- a == b</tt> where \c a is of the form <tt>?m[(inst:i t), ...]</tt>.
We perform a "case split",
Case 1) ?m[...] == #i and t == b (for constants, variables, values and Type)
Case 2) imitate b
*/
bool process_metavar_inst(expr const & a, expr const & b, bool is_lhs, unification_constraint const & c) {
// This method is miss some cases. In particular the local context of \c a contains metavariables.
//
// (f#2 #1) == ?M2[i:1 ?M1]
//
// A possible solution for this constraint is:
// ?M2 == #1
// ?M1 == f#2 #1
//
// TODO(Leo): consider the following alternative design: We do NOT use approximations, since it is quite
// hard to understand what happened when they do not work. Instead, we rely on user provided plugins
// for handling the nasty cases.
//
// TODO(Leo): another possible design is to inform the user where approximation was used.
if (is_metavar_inst(a) && (is_eq(c) || (is_lhs && !is_actual_upper(b)) || (!is_lhs && !is_actual_lower(b)))) {
lean_assert(!is_assigned(a));
if (is_constant(b) || is_type(b) || is_value(b) || is_var(b)) {
local_context lctx = metavar_lctx(a);
buffer<expr> solutions;
collect_metavar_solutions(lctx, b, solutions);
lean_assert(solutions.size() >= 1);
bool keep_c = local_context_has_metavar(metavar_lctx(a));
expr m = mk_metavar(metavar_name(a));
context ctx_m = m_state.m_menv->get_context(m);
if (solutions.size() == 1) {
justification new_jst(new destruct_justification(c));
if (keep_c)
push_active(c);
push_new_eq_constraint(ctx_m, m, solutions[0], new_jst);
return true;
} else {
// More than one solution. We must create a case-split.
std::unique_ptr<generic_case_split> new_cs(new generic_case_split(c, m_state));
for (auto s : solutions) {
state new_state(m_state);
justification new_assumption = mk_assumption();
if (keep_c)
push_front(new_state.m_active_cnstrs, c);
push_new_eq_constraint(new_state.m_active_cnstrs, ctx_m, m, s, new_assumption);
new_cs->push_back(new_state, new_assumption);
}
bool r = new_cs->next(*this);
lean_assert(r);
m_case_splits.push_back(std::move(new_cs));
return r;
}
} else if (is_lambda(b) || is_pi(b)) {
imitate_abstraction(a, b, c);
return true;
} else if (is_app(b) && !has_metavar(arg(b, 0))) {
imitate_application(a, b, c);
return true;
} else if (is_eq(b)) {
imitate_equality(a, b, c);
return true;
}
}
return false;
}
/**
\brief Process a constraint of the form <tt>ctx |- ?m[lift, ...] == b</tt> where \c b is an abstraction.
That is, \c b is a Pi or Lambda. In both cases, ?m must have the same kind.
We just add a new assignment that forces ?m to have the corresponding kind.
Remark: we can expand this method and support application and equality
*/
bool process_metavar_lift_abstraction(expr const & a, expr const & b, unification_constraint const & c) {
if (is_metavar_lift(a) && is_abstraction(b)) {
imitate_abstraction(a, b, c);
return true;
} else {
return false;
}
}
/**
\brief Return true iff c is a constraint of the form <tt>ctx |- a << ?m</tt>, where \c a is Type or Bool
*/
bool is_lower(unification_constraint const & c) {
return
is_convertible(c) &&
(is_metavar(convertible_to(c)) || is_meta_app(convertible_to(c))) &&
(is_bool(convertible_from(c)) || is_type(convertible_from(c)));
}
/** \brief Process constraint of the form <tt>ctx |- a << ?m</tt>, where \c a is Type or Bool */
bool process_lower(expr const & a, expr const & b, unification_constraint const & c) {
if (is_lower(c)) {
// Remark: in principle, there are infinite number of choices.
// We approximate and only consider the most useful ones.
justification new_jst(new destruct_justification(c));
if (is_bool(a)) {
expr choices[3] = { Bool, Type(), TypeU };
push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst));
return true;
} else if (m_env->is_ge(ty_level(a), m_U)) {
expr choices[2] = { a, Type(ty_level(a) + 1) };
push_active(mk_choice_constraint(get_context(c), b, 2, choices, new_jst));
return true;
} else {
expr choices[3] = { a, Type(ty_level(a) + 1), TypeU };
push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst));
return true;
}
} else {
return false;
}
}
/**
\brief Return true if the current queue contains a constraint that satisfies the predicate p
*/
template<typename P>
bool has_constraint(P p) {
for (auto const & c : m_state.m_active_cnstrs) {
if (p(c))
return true;
}
for (auto const & c : m_state.m_delayed_cnstrs) {
if (p(c.first))
return true;
}
return false;
}
/**
\brief Return true iff the current queue has a max constraint of the form <tt>ctx |- max(L1, L2) == a</tt>.
\pre is_metavar(a)
*/
bool has_max_constraint(expr const & a) {
lean_assert(is_metavar(a));
return has_constraint([&](unification_constraint const & c) { return is_max(c) && max_rhs(c) == a; });
}
/**
\brief Return true iff the current queue has a constraint that is a lower bound for \c a.
\pre is_metavar(a)
*/
bool has_lower(expr const & a) {
lean_assert(is_metavar(a));
return has_constraint([&](unification_constraint const & c) { return is_lower(c) && convertible_to(c) == a; });
}
/** \brief Process constraint of the form <tt>ctx |- ?m << b</tt>, where \c a is Type */
bool process_upper(expr const & a, expr const & b, unification_constraint const & c) {
if (is_convertible(c) && is_metavar(a) && is_type(b) && !has_max_constraint(a) && !has_lower(a)) {
// Remark: in principle, there are infinite number of choices.
// We approximate and only consider the most useful ones.
//
// Remark: we only consider \c a if the queue does not have a constraint
// of the form ctx |- max(L1, L2) == a.
// If it does, we don't need to guess. We wait \c a to be assigned
// and just check if the upper bound is satisfied.
//
// Remark: we also give preference to lower bounds
justification new_jst(new destruct_justification(c));
if (b == Type()) {
expr choices[2] = { Type(), Bool };
push_active(mk_choice_constraint(get_context(c), a, 2, choices, new_jst));
return true;
} else if (b == TypeU) {
expr choices[4] = { TypeU, Type(level() + 1), Type(), Bool };
push_active(mk_choice_constraint(get_context(c), a, 4, choices, new_jst));
return true;
} else {
level const & lvl = ty_level(b);
lean_assert(!lvl.is_bottom());
if (is_lift(lvl)) {
// If b is (Type L + k)
// make choices == { Type(L + k), Type(L + k - 1), ..., Type(L), Type, Bool }
buffer<expr> choices;
unsigned k = lift_offset(lvl);
level L = lift_of(lvl);
lean_assert(k > 0);
while (k > 0) {
choices.push_back(mk_type(L + k));
k--;
}
choices.push_back(mk_type(L));
if (!L.is_bottom())
choices.push_back(Type());
choices.push_back(Bool);
push_active(mk_choice_constraint(get_context(c), a, choices.size(), choices.data(), new_jst));
return true;
} else if (is_uvar(lvl)) {
expr choices[4] = { Type(level() + 1), Type(), b, Bool };
push_active(mk_choice_constraint(get_context(c), a, 4, choices, new_jst));
return true;
} else {
lean_assert(is_max(lvl));
// TODO(Leo)
return false;
}
}
} else {
return false;
}
}
bool process_assigned_metavar(unification_constraint const & c, expr const & a, bool is_lhs) {
if (is_metavar(a) && is_assigned(a)) {
auto s_j = get_subst_jst(a);
justification new_jst(new substitution_justification(c, s_j.second));
push_updated_constraint(c, is_lhs, s_j.first, new_jst);
return true;
} else {
return false;
}
}
/**
\brief Resolve constraints of the form
ctx |- ?m << Pi(x : A, B) (param is_lhs is true)
and
ctx |- Pi(x : A, B) << ?m (param is_lhs is false)
where ?m is not assigned and does not have a local context.
We replace
ctx | ?m << Pi(x : A, B)
with
ctx |- ?m == Pi(x : A, ?m1)
ctx, x : A |- ?m1 << B
*/
void process_metavar_conv_pi(unification_constraint const & c, expr const & m, expr const & pi, bool is_lhs) {
lean_assert(!is_eq(c));
lean_assert(is_metavar(m) && !has_local_context(m));
lean_assert(!is_assigned(m));
lean_assert(is_pi(pi));
lean_assert(is_lhs || is_eqp(convertible_to(c), m));
lean_assert(!is_lhs || is_eqp(convertible_from(c), m));
context ctx = get_context(c);
context new_ctx = extend(ctx, abst_name(pi), abst_domain(pi));
expr m1 = m_state.m_menv->mk_metavar(new_ctx);
justification new_jst(new destruct_justification(c));
// Add ctx, x : A |- ?m1 << B when is_lhs == true,
// and ctx, x : A |- B << ?m1 when is_lhs == false
expr lhs = m1;
expr rhs = abst_body(pi);
if (!is_lhs)
swap(lhs, rhs);
push_new_constraint(false, new_ctx, lhs, rhs, new_jst);
// Add ctx |- ?m == Pi(x : A, ?m1)
push_new_eq_constraint(ctx, m, update_abstraction(pi, abst_domain(pi), m1), new_jst);
}
bool process_eq_convertible(context const & ctx, expr const & a, expr const & b, unification_constraint const & c) {
bool eq = is_eq(c);
if (a == b)
return true;
if (!has_metavar(a) && !has_metavar(b)) {
if (!eq) {
if (m_type_inferer.is_convertible(a, b, ctx)) {
return true;
} else {
m_conflict = mk_failure_justification(c);
return false;
}
}
}
if (process_assigned_metavar(c, a, true) || process_assigned_metavar(c, b, false))
return true;
if (m_assume_injectivity && is_app(a) && is_app(b) && num_args(a) == num_args(b) && arg(a, 0) == arg(b, 0)) {
// If m_assume_injectivity is true, we apply the following rule
// ctx |- (f a1 a2) == (f b1 b2)
// ===>
// ctx |- a1 == b1
// ctx |- a2 == b2
justification new_jst(new destruct_justification(c));
for (unsigned i = 1; i < num_args(a); i++)
push_new_eq_constraint(ctx, arg(a, i), arg(b, i), new_jst);
return true;
}
status r;
r = process_metavar(c, a, b, true);
if (r != Continue) { return r == Processed; }
r = process_metavar(c, b, a, false);
if (r != Continue) { return r == Processed; }
if (is_eq_heq(a) && is_eq_heq(b)) {
expr_pair p1 = eq_heq_args(a);
expr_pair p2 = eq_heq_args(b);
justification new_jst(new destruct_justification(c));
push_new_eq_constraint(ctx, p1.first, p2.first, new_jst);
push_new_eq_constraint(ctx, p1.second, p2.second, new_jst);
return true;
}
if (a.kind() == b.kind()) {
switch (a.kind()) {
case expr_kind::Pi: {
justification new_jst(new destruct_justification(c));
push_new_eq_constraint(ctx, abst_domain(a), abst_domain(b), new_jst);
context new_ctx = extend(ctx, abst_name(a), abst_domain(a));
push_new_constraint(eq, new_ctx, abst_body(a), abst_body(b), new_jst);
return true;
}
case expr_kind::Lambda: {
justification new_jst(new destruct_justification(c));
push_new_eq_constraint(ctx, abst_domain(a), abst_domain(b), new_jst);
context new_ctx = extend(ctx, abst_name(a), abst_domain(a));
push_new_eq_constraint(new_ctx, abst_body(a), abst_body(b), new_jst);
return true;
}
default:
break;
}
}
if (!is_meta_app(a) && !is_meta_app(b) && normalize_head(a, b, c)) { return true; }
if (!eq) {
// Try to assign convertability constraints.
if (is_metavar(a) && !is_assigned(a) && !has_local_context(a)) {
if (is_pi(b)) {
process_metavar_conv_pi(c, a, b, true);
return true;
} else if (!is_type(b) && !is_meta(b)) {
// We can assign a <- b at this point IF b is not (Type lvl) or Metavariable
lean_assert(!has_metavar(b, a));
return assign(a, b, c, true);
}
}
if (is_metavar(b) && !is_assigned(b) && !has_local_context(b)) {
if (is_pi(a)) {
process_metavar_conv_pi(c, b, a, false);
return true;
} else if (!is_type(a) && !is_meta(a) && a != Bool) {
// We can assign b <- a at this point IF a is not (Type lvl) or Metavariable or Bool.
lean_assert(!has_metavar(a, b));
return assign(b, a, c, false);
}
}
}
if (process_simple_ho_match(ctx, a, b, true, c) ||
process_simple_ho_match(ctx, b, a, false, c))
return true;
if (!eq && is_bool(a) && is_type(b))
return true;
if (a.kind() == b.kind()) {
switch (a.kind()) {
case expr_kind::Constant: case expr_kind::Var: case expr_kind::Value:
if (a == b) {
return true;
} else {
m_conflict = mk_failure_justification(c);
return false;
}
case expr_kind::Type:
if ((!eq && m_env->is_ge(ty_level(b), ty_level(a))) || (eq && a == b)) {
return true;
} else {
m_conflict = mk_failure_justification(c);
return false;
}
case expr_kind::App:
if (!is_meta_app(a) && !is_meta_app(b)) {
if (num_args(a) == num_args(b)) {
justification new_jst(new destruct_justification(c));
for (unsigned i = 0; i < num_args(a); i++)
push_new_eq_constraint(ctx, arg(a, i), arg(b, i), new_jst);
return true;
} else {
m_conflict = mk_failure_justification(c);
return false;
}
}
break;
case expr_kind::Let:
lean_unreachable(); // LCOV_EXCL_LINE
return true;
default:
break;
}
}
if (instantiate_metavars(true, a, c) ||
instantiate_metavars(false, b, c)) {
return true;
}
// If 'a' and 'b' have different kinds, and 'a' and 'b' are not metavariables,
// and 'a' and 'b' are not applications where the function contains metavariables,
// then it is not possible to unify 'a' and 'b'.
// We need the last condition because if 'a'/'b' are applications containing metavariables,
// then they can be reduced when the metavariable is assigned
// Here is an example:
// |- (?m Type) << Type
// If ?m is assigned to the identity function (fun x, x), then the constraint can be solved.
if (a.kind() != b.kind() && !is_metavar(a) && !is_metavar(b) &&
!(is_app(a) && has_metavar(arg(a, 0))) && !(is_app(b) && has_metavar(arg(b, 0)))) {
// std::cout << "CONFLICT: "; display(std::cout, c); std::cout << "\n";
m_conflict = mk_failure_justification(c);
return false;
}
push_delayed(c);
return true;
}
bool process_max(unification_constraint const & c) {
expr lhs1 = max_lhs1(c);
expr lhs2 = max_lhs2(c);
expr const & rhs = max_rhs(c);
buffer<justification> jsts;
bool modified = false;
expr new_lhs1 = lhs1;
expr new_lhs2 = lhs2;
expr new_rhs = rhs;
if (has_assigned_metavar(lhs1)) {
new_lhs1 = instantiate_metavars(lhs1, jsts);
modified = true;
}
if (has_assigned_metavar(lhs2)) {
new_lhs2 = instantiate_metavars(lhs2, jsts);
modified = true;
}
if (has_assigned_metavar(rhs)) {
new_rhs = instantiate_metavars(rhs, jsts);
modified = true;
}
if (modified) {
justification new_jst = mk_subst_justification(c, jsts);
push_active(mk_max_constraint(get_context(c), new_lhs1, new_lhs2, new_rhs, new_jst));
return true;
}
if (is_bool(lhs2)) {
justification new_jst(new normalize_justification(c));
push_new_eq_constraint(get_context(c), lhs2, rhs, new_jst);
return true;
}
if (!is_metavar(lhs1) && !is_type(lhs1)) {
new_lhs1 = normalize(get_context(c), lhs1);
modified = (lhs1 != new_lhs1);
}
if (!is_metavar(lhs2) && !is_type(lhs2)) {
new_lhs2 = normalize(get_context(c), lhs2);
modified = (lhs2 != new_lhs2);
}
if (!is_metavar(rhs) && !is_type(rhs)) {
new_rhs = normalize(get_context(c), rhs);
modified = (rhs != new_rhs);
}
if (modified) {
justification new_jst(new normalize_justification(c));
push_active(mk_max_constraint(get_context(c), new_lhs1, new_lhs2, new_rhs, new_jst));
return true;
}
if (is_bool(lhs1))
lhs1 = Type();
if (is_type(lhs1) && is_type(lhs2)) {
justification new_jst(new normalize_justification(c));
expr new_lhs = mk_type(max(ty_level(lhs1), ty_level(lhs2)));
push_new_eq_constraint(get_context(c), new_lhs, rhs, new_jst);
return true;
}
if (lhs1 == rhs) {
// ctx |- max(lhs1, lhs2) == rhs
// ==> IF lhs1 = rhs
// ctx |- lhs2 << rhs
justification new_jst(new normalize_justification(c));
push_active(mk_convertible_constraint(get_context(c), lhs2, rhs, new_jst));
return true;
} else if (lhs2 == rhs && is_type(lhs2)) {
// ctx |- max(lhs1, lhs2) == rhs IF lhs2 is a Type
// ==> IF lhs1 = rhs
// ctx |- lhs2 << rhs
// Remark: this rule is not applicable when lhs2 == Bool.
// Recall that max is actually a constraint generated for a Pi(x : A, B)
// where lhs1 and lhs2 represent the types of A and B.
// If lhs2 == Bool, the type of Pi(x : A, B) is Bool, and the type
// of A (lhs1) can be as big as we want
justification new_jst(new normalize_justification(c));
push_active(mk_convertible_constraint(get_context(c), lhs1, rhs, new_jst));
return true;
}
if ((!has_metavar(lhs1) && !is_type(lhs1)) ||
(!has_metavar(lhs2) && !is_type(lhs2))) {
m_conflict = mk_failure_justification(c);
return false;
}
// std::cout << "Postponed: "; display(std::cout, c);
push_delayed(c);
return true;
}
bool process_choice(unification_constraint const & c) {
std::unique_ptr<case_split> new_cs(new choice_case_split(c, m_state));
bool r = new_cs->next(*this);
lean_assert(r);
m_case_splits.push_back(std::move(new_cs));
return r;
}
void resolve_conflict() {
lean_assert(m_conflict);
// std::cout << "Resolve conflict, num case_splits: " << m_case_splits.size() << "\n";
// formatter fmt = mk_simple_formatter();
// std::cout << m_conflict.pp(fmt, options(), nullptr, true) << "\n";
while (!m_case_splits.empty()) {
std::unique_ptr<case_split> & d = m_case_splits.back();
// std::cout << "Assumption " << d->m_curr_assumption.pp(fmt, options(), nullptr, true) << "\n";
if (depends_on(m_conflict, d->m_curr_assumption)) {
d->m_failed_justifications.push_back(m_conflict);
if (d->next(*this)) {
m_conflict = justification();
return;
}
}
m_case_splits.pop_back();
}
throw elaborator_exception(m_conflict);
}
bool next_choice_case(choice_case_split & s) {
unification_constraint & choice = s.m_choice;
unsigned idx = s.m_idx;
if (idx < choice_size(choice)) {
s.m_idx++;
s.m_curr_assumption = mk_assumption();
m_state = s.m_prev_state;
push_new_eq_constraint(get_context(choice), choice_mvar(choice), choice_ith(choice, idx), s.m_curr_assumption);
return true;
} else {
m_conflict = justification(new unification_failure_by_cases_justification(choice, s.m_failed_justifications.size(),
s.m_failed_justifications.data(),
s.m_prev_state.m_menv));
return false;
}
}
bool next_generic_case(generic_case_split & s) {
unsigned idx = s.m_idx;
unsigned sz = s.m_states.size();
if (idx < sz) {
s.m_idx++;
s.m_curr_assumption = s.m_assumptions[sz - idx - 1];
m_state = s.m_states[sz - idx - 1];
return true;
} else {
m_conflict = justification(new unification_failure_by_cases_justification(s.m_constraint, s.m_failed_justifications.size(),
s.m_failed_justifications.data(),
s.m_prev_state.m_menv));
return false;
}
}
bool next_plugin_case(plugin_case_split & s) {
try {
s.m_curr_assumption = mk_assumption();
std::pair<metavar_env, list<unification_constraint>> r = s.m_alternatives->next(s.m_curr_assumption);
m_state.m_active_cnstrs = s.m_prev_state.m_active_cnstrs;
m_state.m_delayed_cnstrs = s.m_prev_state.m_delayed_cnstrs;
m_state.m_recently_assigned = s.m_prev_state.m_recently_assigned;
m_state.m_menv = r.first;
for (auto c : r.second) {
push_active(c);
}
return true;
} catch (exception & ex) {
m_conflict = justification(new unification_failure_by_cases_justification(s.m_constraint, s.m_failed_justifications.size(),
s.m_failed_justifications.data(),
s.m_prev_state.m_menv));
return false;
}
}
bool process_delayed() {
name_set const & recently_assigned = m_state.m_recently_assigned;
m_state.m_delayed_cnstrs =
filter(m_state.m_delayed_cnstrs,
[&](std::pair<unification_constraint, name_list> const & p) {
bool found = false;
for (auto const & m : p.second) {
if (recently_assigned.contains(m)) {
found = true;
break;
}
}
if (found) {
push_active(p.first);
return false;
} else {
return true;
}
});
m_state.m_recently_assigned = name_set(); // reset
lean_assert(m_state.m_recently_assigned.empty());
if (!empty(m_state.m_active_cnstrs))
return true;
// second pass trying to apply process_meta_app
m_state.m_delayed_cnstrs =
remove_last(m_state.m_delayed_cnstrs,
[&](std::pair<unification_constraint, name_list> const & p) {
unification_constraint const & c = p.first;
if (is_eq(c) || is_convertible(c)) {
expr const & a = is_eq(c) ? eq_lhs(c) : convertible_from(c);
expr const & b = is_eq(c) ? eq_rhs(c) : convertible_to(c);
if ((process_meta_app(a, b, true, c) || process_meta_app(b, a, false, c))) {
// std::cout << "META_APP: "; display(std::cout, c); std::cout << "\n";
return true;
}
}
return false;
});
if (!empty(m_state.m_active_cnstrs))
return true;
// final pass trying expensive constraints
m_state.m_delayed_cnstrs =
remove_last(m_state.m_delayed_cnstrs,
[&](std::pair<unification_constraint, name_list> const & p) {
unification_constraint const & c = p.first;
if (is_eq(c) || is_convertible(c)) {
// std::cout << "EXPENSIVE: "; display(std::cout, c); std::cout << "\n";
expr const & a = is_eq(c) ? eq_lhs(c) : convertible_from(c);
expr const & b = is_eq(c) ? eq_rhs(c) : convertible_to(c);
if (process_lower(a, b, c) ||
process_upper(a, b, c) ||
process_metavar_inst(a, b, true, c) ||
process_metavar_inst(b, a, false, c) ||
process_metavar_lift_abstraction(a, b, c) ||
process_metavar_lift_abstraction(b, a, c) ||
process_meta_app(a, b, true, c, false, true) ||
process_meta_app(b, a, false, c, false, true) ||
process_meta_app(a, b, true, c, true)) {
return true;
}
}
return false;
});
if (!empty(m_state.m_active_cnstrs))
return true;
// "approximated mode"
// change convertability into equality constraint
m_state.m_delayed_cnstrs =
remove_last(m_state.m_delayed_cnstrs,
[&](std::pair<unification_constraint, name_list> const & p) {
if (is_convertible(p.first)) {
unification_constraint const & c = p.first;
// std::cout << "CONVERTABILITY: "; display(std::cout, c); std::cout << "\n";
push_new_eq_constraint(get_context(c), convertible_from(c), convertible_to(c), get_justification(c));
return true;
}
return false;
});
return !empty(m_state.m_active_cnstrs);
}
public:
imp(ro_environment const & env, metavar_env const & menv, unsigned num_cnstrs, unification_constraint const * cnstrs,
options const & opts, std::shared_ptr<elaborator_plugin> const & p):
m_env(env),
m_type_inferer(env),
m_normalizer(env),
m_state(menv, num_cnstrs, cnstrs),
m_plugin(p) {
set_options(opts);
m_next_id = 0;
m_first = true;
m_U = m_env->get_uvar("U");
// display(std::cout);
}
metavar_env next() {
check_interrupted();
if (m_conflict)
throw elaborator_exception(m_conflict);
if (!m_case_splits.empty()) {
buffer<justification> assumptions;
for (std::unique_ptr<case_split> const & cs : m_case_splits)
assumptions.push_back(cs->m_curr_assumption);
m_conflict = justification(new next_solution_justification(assumptions.size(), assumptions.data()));
resolve_conflict();
} else if (m_first) {
m_first = false;
} else {
// this is not the first run, and there are no case-splits
m_conflict = justification(new next_solution_justification(0, nullptr));
throw elaborator_exception(m_conflict);
}
while (true) {
check_interrupted();
cnstr_list & active_cnstrs = m_state.m_active_cnstrs;
if (!empty(active_cnstrs)) {
unification_constraint c = head(active_cnstrs);
m_state.m_active_cnstrs = tail(active_cnstrs);
// std::cout << "Processing, depth: " << m_case_splits.size() << " "; display(std::cout, c);
if (!process(c)) {
resolve_conflict();
}
} else if (!empty(m_state.m_delayed_cnstrs)) {
// std::cout << "PROCESSING DELAYED\n"; display(std::cout); std::cout << "\n\n";
if (!process_delayed()) {
// std::cout << "FAILED to solve\n";
// display(std::cout);
return m_state.m_menv;
}
} else {
return m_state.m_menv;
}
}
}
void display(std::ostream & out, unification_constraint const & c) const {
formatter fmt = mk_simple_formatter();
out << c.pp(fmt, options(), nullptr, false) << "\n";
}
void display(std::ostream & out) const {
m_state.m_menv->for_each_subst([&](name const & m, expr const & e) {
out << m << " <- " << e << "\n";
});
for (auto c : m_state.m_active_cnstrs)
display(out, c);
out << "Delayed constraints:\n";
for (auto c : m_state.m_delayed_cnstrs)
display(out, c.first);
}
};
elaborator::elaborator(ro_environment const & env,
metavar_env const & menv,
unsigned num_cnstrs,
unification_constraint const * cnstrs,
options const & opts,
std::shared_ptr<elaborator_plugin> const & p):
m_ptr(new imp(env, menv, num_cnstrs, cnstrs, opts, p)) {
}
elaborator::elaborator(ro_environment const & env,
metavar_env const & menv,
context const & ctx, expr const & lhs, expr const & rhs):
elaborator(env, menv, { mk_eq_constraint(ctx, lhs, rhs, justification()) }) {
}
elaborator::~elaborator() {
}
metavar_env elaborator::next() {
return m_ptr->next();
}
}