lean2/src/builtin/Nat.lean

248 lines
11 KiB
Text
Raw Normal View History

import kernel
import macros
variable Nat : Type
alias : Nat
namespace Nat
builtin numeral
builtin add : Nat → Nat → Nat
infixl 65 + : add
builtin mul : Nat → Nat → Nat
infixl 70 * : mul
builtin le : Nat → Nat → Bool
infix 50 <= : le
infix 50 ≤ : le
definition ge (a b : Nat) := b ≤ a
infix 50 >= : ge
infix 50 ≥ : ge
definition lt (a b : Nat) := ¬ (a ≥ b)
infix 50 < : lt
definition gt (a b : Nat) := ¬ (a ≤ b)
infix 50 > : gt
definition id (a : Nat) := a
notation 55 | _ | : id
axiom succ_nz (a : Nat) : a + 1 ≠ 0
axiom succ_inj {a b : Nat} (H : a + 1 = b + 1) : a = b
axiom add_zeror (a : Nat) : a + 0 = a
axiom add_succr (a b : Nat) : a + (b + 1) = (a + b) + 1
axiom mul_zeror (a : Nat) : a * 0 = 0
axiom mul_succr (a b : Nat) : a * (b + 1) = a * b + a
axiom le_def (a b : Nat) : a ≤ b = ∃ c, a + c = b
axiom induction {P : Nat → Bool} (a : Nat) (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : P a
theorem pred_nz {a : Nat} : a ≠ 0 → ∃ b, b + 1 = a
:= induction a
(λ H : 0 ≠ 0, false_elim (∃ b, b + 1 = 0) H)
(λ (n : Nat) (iH : n ≠ 0 → ∃ b, b + 1 = n) (H : n + 1 ≠ 0),
or_elim (em (n = 0))
(λ Heq0 : n = 0, exists_intro 0 (calc 0 + 1 = n + 1 : { symm Heq0 }))
(λ Hne0 : n ≠ 0,
obtain (w : Nat) (Hw : w + 1 = n), from (iH Hne0),
exists_intro (w + 1) (calc w + 1 + 1 = n + 1 : { Hw })))
theorem discriminate {B : Bool} {a : Nat} (H1: a = 0 → B) (H2 : ∀ n, a = n + 1 → B) : B
:= or_elim (em (a = 0))
(λ Heq0 : a = 0, H1 Heq0)
(λ Hne0 : a ≠ 0, obtain (w : Nat) (Hw : w + 1 = a), from (pred_nz Hne0),
H2 w (symm Hw))
theorem add_zerol (a : Nat) : 0 + a = a
:= induction a
(have 0 + 0 = 0 : trivial)
(λ (n : Nat) (iH : 0 + n = n),
calc 0 + (n + 1) = (0 + n) + 1 : add_succr 0 n
... = n + 1 : { iH })
theorem add_succl (a b : Nat) : (a + 1) + b = (a + b) + 1
:= induction b
(calc (a + 1) + 0 = a + 1 : add_zeror (a + 1)
... = (a + 0) + 1 : { symm (add_zeror a) })
(λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1),
calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : add_succr (a + 1) n
... = ((a + n) + 1) + 1 : { iH }
... = (a + (n + 1)) + 1 : { have (a + n) + 1 = a + (n + 1) : symm (add_succr a n) })
theorem add_comm (a b : Nat) : a + b = b + a
:= induction b
(calc a + 0 = a : add_zeror a
... = 0 + a : symm (add_zerol a))
(λ (n : Nat) (iH : a + n = n + a),
calc a + (n + 1) = (a + n) + 1 : add_succr a n
... = (n + a) + 1 : { iH }
... = (n + 1) + a : symm (add_succl n a))
theorem add_assoc (a b c : Nat) : a + (b + c) = (a + b) + c
:= induction a
(calc 0 + (b + c) = b + c : add_zerol (b + c)
... = (0 + b) + c : { symm (add_zerol b) })
(λ (n : Nat) (iH : n + (b + c) = (n + b) + c),
calc (n + 1) + (b + c) = (n + (b + c)) + 1 : add_succl n (b + c)
... = ((n + b) + c) + 1 : { iH }
... = ((n + b) + 1) + c : symm (add_succl (n + b) c)
... = ((n + 1) + b) + c : { have (n + b) + 1 = (n + 1) + b : symm (add_succl n b) })
theorem mul_zerol (a : Nat) : 0 * a = 0
:= induction a
(have 0 * 0 = 0 : trivial)
(λ (n : Nat) (iH : 0 * n = 0),
calc 0 * (n + 1) = (0 * n) + 0 : mul_succr 0 n
... = 0 + 0 : { iH }
... = 0 : trivial)
theorem mul_succl (a b : Nat) : (a + 1) * b = a * b + b
:= induction b
(calc (a + 1) * 0 = 0 : mul_zeror (a + 1)
... = a * 0 : symm (mul_zeror a)
... = a * 0 + 0 : symm (add_zeror (a * 0)))
(λ (n : Nat) (iH : (a + 1) * n = a * n + n),
calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : mul_succr (a + 1) n
... = a * n + n + (a + 1) : { iH }
... = a * n + n + a + 1 : add_assoc (a * n + n) a 1
... = a * n + (n + a) + 1 : { have a * n + n + a = a * n + (n + a) : symm (add_assoc (a * n) n a) }
... = a * n + (a + n) + 1 : { add_comm n a }
... = a * n + a + n + 1 : { add_assoc (a * n) a n }
... = a * (n + 1) + n + 1 : { symm (mul_succr a n) }
... = a * (n + 1) + (n + 1) : symm (add_assoc (a * (n + 1)) n 1))
theorem mul_onel (a : Nat) : 1 * a = a
:= induction a
(have 1 * 0 = 0 : trivial)
(λ (n : Nat) (iH : 1 * n = n),
calc 1 * (n + 1) = 1 * n + 1 : mul_succr 1 n
... = n + 1 : { iH })
theorem mul_oner (a : Nat) : a * 1 = a
:= induction a
(have 0 * 1 = 0 : trivial)
(λ (n : Nat) (iH : n * 1 = n),
calc (n + 1) * 1 = n * 1 + 1 : mul_succl n 1
... = n + 1 : { iH })
theorem mul_comm (a b : Nat) : a * b = b * a
:= induction b
(calc a * 0 = 0 : mul_zeror a
... = 0 * a : symm (mul_zerol a))
(λ (n : Nat) (iH : a * n = n * a),
calc a * (n + 1) = a * n + a : mul_succr a n
... = n * a + a : { iH }
... = (n + 1) * a : symm (mul_succl n a))
theorem distributer (a b c : Nat) : a * (b + c) = a * b + a * c
:= induction a
(calc 0 * (b + c) = 0 : mul_zerol (b + c)
... = 0 + 0 : trivial
... = 0 * b + 0 : { symm (mul_zerol b) }
... = 0 * b + 0 * c : { symm (mul_zerol c) })
(λ (n : Nat) (iH : n * (b + c) = n * b + n * c),
calc (n + 1) * (b + c) = n * (b + c) + (b + c) : mul_succl n (b + c)
... = n * b + n * c + (b + c) : { iH }
... = n * b + n * c + b + c : add_assoc (n * b + n * c) b c
... = n * b + (n * c + b) + c : { symm (add_assoc (n * b) (n * c) b) }
... = n * b + (b + n * c) + c : { add_comm (n * c) b }
... = n * b + b + n * c + c : { add_assoc (n * b) b (n * c) }
... = (n + 1) * b + n * c + c : { symm (mul_succl n b) }
... = (n + 1) * b + (n * c + c) : symm (add_assoc ((n + 1) * b) (n * c) c)
... = (n + 1) * b + (n + 1) * c : { symm (mul_succl n c) })
theorem distributel (a b c : Nat) : (a + b) * c = a * c + b * c
:= calc (a + b) * c = c * (a + b) : mul_comm (a + b) c
... = c * a + c * b : distributer c a b
... = a * c + c * b : { mul_comm c a }
... = a * c + b * c : { mul_comm c b }
theorem mul_assoc (a b c : Nat) : a * (b * c) = a * b * c
:= induction a
(calc 0 * (b * c) = 0 : mul_zerol (b * c)
... = 0 * c : symm (mul_zerol c)
... = (0 * b) * c : { symm (mul_zerol b) })
(λ (n : Nat) (iH : n * (b * c) = n * b * c),
calc (n + 1) * (b * c) = n * (b * c) + (b * c) : mul_succl n (b * c)
... = n * b * c + (b * c) : { iH }
... = (n * b + b) * c : symm (distributel (n * b) b c)
... = (n + 1) * b * c : { symm (mul_succl n b) })
theorem add_inj {a b c : Nat} : a + b = a + c → b = c
:= induction a
(λ H : 0 + b = 0 + c,
calc b = 0 + b : symm (add_zerol b)
... = 0 + c : H
... = c : add_zerol c)
(λ (n : Nat) (iH : n + b = n + c → b = c) (H : n + 1 + b = n + 1 + c),
let L1 : n + b + 1 = n + c + 1
:= (calc n + b + 1 = n + (b + 1) : symm (add_assoc n b 1)
... = n + (1 + b) : { add_comm b 1 }
... = n + 1 + b : add_assoc n 1 b
... = n + 1 + c : H
... = n + (1 + c) : symm (add_assoc n 1 c)
... = n + (c + 1) : { add_comm 1 c }
... = n + c + 1 : add_assoc n c 1),
L2 : n + b = n + c := succ_inj L1
in iH L2)
theorem add_eqz {a b : Nat} (H : a + b = 0) : a = 0
:= discriminate
(λ H1 : a = 0, H1)
(λ (n : Nat) (H1 : a = n + 1),
absurd_elim (a = 0)
H (calc a + b = n + 1 + b : { H1 }
... = n + (1 + b) : symm (add_assoc n 1 b)
... = n + (b + 1) : { add_comm 1 b }
... = n + b + 1 : add_assoc n b 1
... ≠ 0 : succ_nz (n + b)))
theorem le_intro {a b c : Nat} (H : a + c = b) : a ≤ b
:= (symm (le_def a b)) ◂ (have (∃ x, a + x = b) : exists_intro c H)
theorem le_elim {a b : Nat} (H : a ≤ b) : ∃ x, a + x = b
:= (le_def a b) ◂ H
theorem le_refl (a : Nat) : a ≤ a := le_intro (add_zeror a)
theorem le_zero (a : Nat) : 0 ≤ a := le_intro (add_zerol a)
theorem le_trans {a b c : Nat} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c
:= obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le_elim H1),
obtain (w2 : Nat) (Hw2 : b + w2 = c), from (le_elim H2),
le_intro (calc a + (w1 + w2) = a + w1 + w2 : add_assoc a w1 w2
... = b + w2 : { Hw1 }
... = c : Hw2)
theorem le_add {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c
:= obtain (w : Nat) (Hw : a + w = b), from (le_elim H),
le_intro (calc a + c + w = a + (c + w) : symm (add_assoc a c w)
... = a + (w + c) : { add_comm c w }
... = a + w + c : add_assoc a w c
... = b + c : { Hw })
theorem le_antisym {a b : Nat} (H1 : a ≤ b) (H2 : b ≤ a) : a = b
:= obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le_elim H1),
obtain (w2 : Nat) (Hw2 : b + w2 = a), from (le_elim H2),
let L1 : w1 + w2 = 0
:= add_inj (calc a + (w1 + w2) = a + w1 + w2 : { add_assoc a w1 w2 }
... = b + w2 : { Hw1 }
... = a : Hw2
... = a + 0 : symm (add_zeror a)),
L2 : w1 = 0 := add_eqz L1
in calc a = a + 0 : symm (add_zeror a)
... = a + w1 : { symm L2 }
... = b : Hw1
set_opaque add true
set_opaque mul true
set_opaque le true
set_opaque id true
set_opaque ge true
set_opaque lt true
set_opaque gt true
set_opaque id true
end