lean2/library/theories/analysis/metric_space.lean

788 lines
29 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Metric spaces.
-/
import data.real.complete data.pnat ..topology.continuous ..topology.limit data.set
open nat real eq.ops classical set prod set.filter topology interval
structure metric_space [class] (M : Type) : Type :=
(dist : M → M → )
(dist_self : ∀ x : M, dist x x = 0)
(eq_of_dist_eq_zero : ∀ {x y : M}, dist x y = 0 → x = y)
(dist_comm : ∀ x y : M, dist x y = dist y x)
(dist_triangle : ∀ x y z : M, dist x z ≤ dist x y + dist y z)
namespace analysis
section metric_space_M
variables {M : Type} [metric_space M]
definition dist (x y : M) : := metric_space.dist x y
proposition dist_self (x : M) : dist x x = 0 := metric_space.dist_self x
proposition eq_of_dist_eq_zero {x y : M} (H : dist x y = 0) : x = y :=
metric_space.eq_of_dist_eq_zero H
proposition dist_comm (x y : M) : dist x y = dist y x := metric_space.dist_comm x y
proposition dist_eq_zero_iff (x y : M) : dist x y = 0 ↔ x = y :=
iff.intro eq_of_dist_eq_zero (suppose x = y, this ▸ !dist_self)
proposition dist_triangle (x y z : M) : dist x z ≤ dist x y + dist y z :=
metric_space.dist_triangle x y z
proposition dist_nonneg (x y : M) : 0 ≤ dist x y :=
have dist x y + dist y x ≥ 0, by rewrite -(dist_self x); apply dist_triangle,
have 2 * dist x y ≥ 0,
by krewrite [-real.one_add_one, right_distrib, +one_mul, dist_comm at {2}]; apply this,
nonneg_of_mul_nonneg_left this two_pos
proposition dist_pos_of_ne {x y : M} (H : x ≠ y) : dist x y > 0 :=
lt_of_le_of_ne !dist_nonneg (suppose 0 = dist x y, H (iff.mp !dist_eq_zero_iff this⁻¹))
proposition ne_of_dist_pos {x y : M} (H : dist x y > 0) : x ≠ y :=
suppose x = y,
have H1 : dist x x > 0, by rewrite this at {2}; exact H,
by rewrite dist_self at H1; apply not_lt_self _ H1
proposition eq_of_forall_dist_le {x y : M} (H : ∀ ε, ε > 0 → dist x y ≤ ε) : x = y :=
eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H)
/- instantiate metric space as a topology -/
definition open_ball (x : M) (ε : ) := {y | dist y x < ε}
theorem open_ball_eq_empty_of_nonpos (x : M) {ε : } (Hε : ε ≤ 0) : open_ball x ε = ∅ :=
begin
apply eq_empty_of_forall_not_mem,
intro y Hlt,
apply not_lt_of_ge (dist_nonneg y x),
apply lt_of_lt_of_le Hlt Hε
end
theorem pos_of_mem_open_ball {x : M} {ε : } {u : M} (Hu : u ∈ open_ball x ε) : ε > 0 :=
begin
apply lt_of_not_ge,
intro Hge,
note Hop := open_ball_eq_empty_of_nonpos x Hge,
rewrite Hop at Hu,
apply not_mem_empty _ Hu
end
theorem mem_open_ball (x : M) {ε : } (H : ε > 0) : x ∈ open_ball x ε :=
show dist x x < ε, by rewrite dist_self; assumption
definition closed_ball (x : M) (ε : ) := {y | dist y x ≤ ε}
theorem closed_ball_eq_compl (x : M) (ε : ) : closed_ball x ε = - {y | dist y x > ε} :=
ext (take y, iff.intro
(suppose dist y x ≤ ε, not_lt_of_ge this)
(suppose ¬ dist y x > ε, le_of_not_gt this))
variable (M)
definition open_sets_basis : set (set M) := { s | ∃ x, ∃ ε, s = open_ball x ε }
definition metric_topology [instance] : topology M := topology.generated_by (open_sets_basis M)
variable {M}
theorem open_ball_mem_open_sets_basis (x : M) (ε : ) : open_ball x ε ∈ open_sets_basis M :=
exists.intro x (exists.intro ε rfl)
theorem Open_open_ball (x : M) (ε : ) : Open (open_ball x ε) :=
by apply generators_mem_topology_generated_by; apply open_ball_mem_open_sets_basis
theorem closed_closed_ball (x : M) {ε : } (H : ε > 0) : closed (closed_ball x ε) :=
Open_of_forall_exists_Open_nbhd
(take y, suppose ¬ dist y x ≤ ε,
have dist y x > ε, from lt_of_not_ge this,
let B := open_ball y (dist y x - ε) in
have y ∈ B, from mem_open_ball y (sub_pos_of_lt this),
have B ⊆ - closed_ball x ε, from
take y',
assume Hy'y : dist y' y < dist y x - ε,
assume Hy'x : dist y' x ≤ ε,
show false, from not_lt_self (dist y x)
(calc
dist y x ≤ dist y y' + dist y' x : dist_triangle
... < dist y x - ε + dist y' x : by rewrite dist_comm; apply add_lt_add_right Hy'y
... ≤ dist y x - ε + ε : add_le_add_left Hy'x
... = dist y x : by rewrite [sub_add_cancel]),
exists.intro B (and.intro (Open_open_ball _ _) (and.intro `y ∈ B` this)))
proposition open_ball_subset_open_ball_of_le (x : M) {r₁ r₂ : } (H : r₁ ≤ r₂) :
open_ball x r₁ ⊆ open_ball x r₂ :=
take y, assume ymem, lt_of_lt_of_le ymem H
theorem exists_open_ball_subset_of_Open_of_mem {U : set M} (HU : Open U) {x : M} (Hx : x ∈ U) :
∃ (r : ), r > 0 ∧ open_ball x r ⊆ U :=
begin
induction HU with s sbasis s t sbasis tbasis ihs iht S Sbasis ihS,
{cases sbasis with x' aux, cases aux with ε seq,
have x ∈ open_ball x' ε, by rewrite -seq; exact Hx,
have εpos : ε > 0, from pos_of_mem_open_ball this,
have ε - dist x x' > 0, from sub_pos_of_lt `x ∈ open_ball x' ε`,
existsi (ε - dist x x'), split, exact this, rewrite seq,
show open_ball x (ε - dist x x') ⊆ open_ball x' ε, from
take y, suppose dist y x < ε - dist x x',
calc
dist y x' ≤ dist y x + dist x x' : dist_triangle
... < ε - dist x x' + dist x x' : add_lt_add_right this
... = ε : sub_add_cancel},
{existsi 1, split, exact zero_lt_one, exact subset_univ _},
{cases ihs (and.left Hx) with rs aux, cases aux with rspos ballrs_sub,
cases iht (and.right Hx) with rt aux, cases aux with rtpos ballrt_sub,
let rmin := min rs rt,
existsi rmin, split, exact lt_min rspos rtpos,
have open_ball x rmin ⊆ s,
from subset.trans (open_ball_subset_open_ball_of_le x !min_le_left) ballrs_sub,
have open_ball x rmin ⊆ t,
from subset.trans (open_ball_subset_open_ball_of_le x !min_le_right) ballrt_sub,
show open_ball x (min rs rt) ⊆ s ∩ t,
by apply subset_inter; repeat assumption},
cases Hx with s aux, cases aux with sS xs,
cases (ihS sS xs) with r aux, cases aux with rpos ballr_sub,
existsi r, split, exact rpos,
show open_ball x r ⊆ ⋃₀ S, from subset.trans ballr_sub (subset_sUnion_of_mem sS)
end
/- limits in metric spaces -/
proposition eventually_nhds_intro {P : M → Prop} {ε : } (εpos : ε > 0) {x : M}
(H : ∀ x', dist x' x < ε → P x') :
eventually P (nhds x) :=
topology.eventually_nhds_intro (Open_open_ball x ε) (mem_open_ball x εpos) H
proposition eventually_nhds_dest {P : M → Prop} {x : M} (H : eventually P (nhds x)) :
∃ ε, ε > 0 ∧ ∀ x', dist x' x < ε → P x' :=
obtain s [(Os : Open s) [(xs : x ∈ s) (Hs : ∀₀ x' ∈ s, P x')]],
from topology.eventually_nhds_dest H,
obtain ε [(εpos : ε > 0) (Hε : open_ball x ε ⊆ s)],
from exists_open_ball_subset_of_Open_of_mem Os xs,
exists.intro ε (and.intro εpos
(take x', suppose dist x' x < ε,
have x' ∈ s, from Hε this,
show P x', from Hs this))
proposition eventually_nhds_iff (P : M → Prop) (x : M) :
eventually P (nhds x) ↔ (∃ ε, ε > 0 ∧ ∀ x', dist x' x < ε → P x') :=
iff.intro eventually_nhds_dest
(assume H, obtain ε [εpos Hε], from H, eventually_nhds_intro εpos Hε)
proposition eventually_dist_lt_nhds (x : M) {ε : } (εpos : ε > 0) :
eventually (λ x', dist x' x < ε) (nhds x) :=
eventually_nhds_intro εpos (λ x' H, H)
proposition eventually_at_within_intro {P : M → Prop} {ε : } (εpos : ε > 0) {x : M} {s : set M}
(H : ∀₀ x' ∈ s, dist x' x < ε → x' ≠ x → P x') :
eventually P [at x within s] :=
topology.eventually_at_within_intro (Open_open_ball x ε) (mem_open_ball x εpos)
(λ x' x'mem x'ne x's, H x's x'mem x'ne)
proposition eventually_at_within_dest {P : M → Prop} {x : M} {s : set M}
(H : eventually P [at x within s]) :
∃ ε, ε > 0 ∧ ∀₀ x' ∈ s, dist x' x < ε → x' ≠ x → P x' :=
obtain t [(Ot : Open t) [(xt : x ∈ t) (Ht : ∀₀ x' ∈ t, x' ≠ x → x' ∈ s → P x')]],
from topology.eventually_at_within_dest H,
obtain ε [(εpos : ε > 0) (Hε : open_ball x ε ⊆ t)],
from exists_open_ball_subset_of_Open_of_mem Ot xt,
exists.intro ε (and.intro εpos
(take x', assume x's distx'x x'nex,
have x' ∈ t, from Hε distx'x,
show P x', from Ht this x'nex x's))
proposition eventually_at_within_iff (P : M → Prop) (x : M) (s : set M) :
eventually P [at x within s] ↔ ∃ ε, ε > 0 ∧ ∀₀ x' ∈ s, dist x' x < ε → x' ≠ x → P x' :=
iff.intro eventually_at_within_dest
(λ H, obtain ε [εpos Hε], from H, eventually_at_within_intro εpos Hε)
proposition eventually_at_intro {P : M → Prop} {ε : } (εpos : ε > 0) {x : M}
(H : ∀ x', dist x' x < ε → x' ≠ x → P x') :
eventually P [at x] :=
topology.eventually_at_intro (Open_open_ball x ε) (mem_open_ball x εpos)
(λ x' x'mem x'ne, H x' x'mem x'ne)
proposition eventually_at_dest {P : M → Prop} {x : M} (H : eventually P [at x]) :
∃ ε, ε > 0 ∧ ∀ ⦃x'⦄, dist x' x < ε → x' ≠ x → P x' :=
obtain ε [εpos Hε], from eventually_at_within_dest H,
exists.intro ε (and.intro εpos (λ x', Hε x' (mem_univ x')))
proposition eventually_at_iff (P : M → Prop) (x : M) :
eventually P [at x] ↔ ∃ ε, ε > 0 ∧ ∀ ⦃x'⦄, dist x' x < ε → x' ≠ x → P x' :=
iff.intro eventually_at_dest (λ H, obtain ε [εpos Hε], from H, eventually_at_intro εpos Hε)
section approaches
variables {X : Type} {F : filter X} {f : X → M} {y : M}
proposition approaches_intro (H : ∀ ε, ε > 0 → eventually (λ x, dist (f x) y < ε) F) :
(f ⟶ y) F :=
tendsto_intro
(take P, assume eventuallyP,
obtain ε [(εpos : ε > 0) (Hε : ∀ x', dist x' y < ε → P x')],
from eventually_nhds_dest eventuallyP,
show eventually (λ x, P (f x)) F,
from eventually_mono (H ε εpos) (λ x Hx, Hε (f x) Hx))
proposition approaches_dest (H : (f ⟶ y) F) {ε : } (εpos : ε > 0) :
eventually (λ x, dist (f x) y < ε) F :=
tendsto_dest H (eventually_dist_lt_nhds y εpos)
variables (F f y)
proposition approaches_iff : (f ⟶ y) F ↔ (∀ ε, ε > 0 → eventually (λ x, dist (f x) y < ε) F) :=
iff.intro approaches_dest approaches_intro
-- TODO: prove this in greater generality in topology.limit
proposition approaches_constant : ((λ x, y) ⟶ y) F :=
approaches_intro (λ ε εpos, eventually_of_forall F (λ x,
show dist y y < ε, by rewrite dist_self; apply εpos))
end approaches
-- here we full unwrap two particular kinds of convergence3
proposition approaches_at_infty_intro {f : → M} {y : M}
(H : ∀ ε, ε > 0 → ∃ N, ∀ n, n ≥ N → dist (f n) y < ε) :
f ⟶ y [at ∞] :=
approaches_intro (λ ε εpos, obtain N HN, from H ε εpos,
eventually_at_infty_intro HN)
proposition approaches_at_infty_dest {f : → M} {y : M}
(H : f ⟶ y [at ∞]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
∃ N, ∀ ⦃n⦄, n ≥ N → dist (f n) y < ε :=
have eventually (λ x, dist (f x) y < ε) [at ∞], from approaches_dest H εpos,
eventually_at_infty_dest this
proposition approaches_at_infty_iff (f : → M) (y : M) :
f ⟶ y [at ∞] ↔ (∀ ε, ε > 0 → ∃ N, ∀ ⦃n⦄, n ≥ N → dist (f n) y < ε) :=
iff.intro approaches_at_infty_dest approaches_at_infty_intro
section metric_space_N
variables {N : Type} [metric_space N]
proposition approaches_at_dest {f : M → N} {y : N} {x : M}
(H : f ⟶ y [at x]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → x' ≠ x → dist (f x') y < ε :=
have eventually (λ x, dist (f x) y < ε) [at x],
from approaches_dest H εpos,
eventually_at_dest this
proposition approaches_at_intro {f : M → N} {y : N} {x : M}
(H : ∀ ε, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → x' ≠ x → dist (f x') y < ε) :
f ⟶ y [at x] :=
approaches_intro (λ ε εpos,
obtain δ [δpos Hδ], from H ε εpos,
eventually_at_intro δpos Hδ)
proposition approaches_at_iff (f : M → N) (y : N) (x : M) : f ⟶ y [at x] ↔
(∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → x' ≠ x → dist (f x') y < ε) :=
iff.intro approaches_at_dest approaches_at_intro
end metric_space_N
-- TODO: remove this. It is only here temporarily, because it is used in normed_space
abbreviation converges_seq [class] (X : → M) : Prop := ∃ y, X ⟶ y [at ∞]
-- TODO: refactor
-- the same, with ≤ in place of <; easier to prove, harder to use
definition approaches_at_infty_intro' {X : → M} {y : M}
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → dist (X n) y ≤ ε) :
(X ⟶ y) [at ∞] :=
approaches_at_infty_intro
take ε, assume epos : ε > 0,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain N HN, from H e2pos,
exists.intro N
(take n, suppose n ≥ N,
calc
dist (X n) y ≤ ε / 2 : HN _ `n ≥ N`
... < ε : div_two_lt_of_pos epos)
-- TODO: prove more generally
proposition approaches_at_infty_unique {X : → M} {y₁ y₂ : M}
(H₁ : X ⟶ y₁ [at ∞]) (H₂ : X ⟶ y₂ [at ∞]) : y₁ = y₂ :=
eq_of_forall_dist_le
(take ε, suppose ε > 0,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2),
from approaches_at_infty_dest H₁ e2pos,
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2),
from approaches_at_infty_dest H₂ e2pos,
let N := max N₁ N₂ in
have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left,
have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right,
have dist y₁ y₂ < ε, from calc
dist y₁ y₂ ≤ dist y₁ (X N) + dist (X N) y₂ : dist_triangle
... = dist (X N) y₁ + dist (X N) y₂ : dist_comm
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
... = ε : add_halves,
show dist y₁ y₂ ≤ ε, from le_of_lt this)
/- TODO: revise
definition converges_seq [class] (X : → M) : Prop := ∃ y, X ⟶ y in
noncomputable definition limit_seq (X : → M) [H : converges_seq X] : M := some H
proposition converges_to_limit_seq (X : → M) [H : converges_seq X] :
(X ⟶ limit_seq X in ) :=
some_spec H
proposition eq_limit_of_converges_to_seq {X : → M} {y : M} (H : X ⟶ y in ) :
y = @limit_seq M _ X (exists.intro y H) :=
converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H))
proposition converges_to_seq_offset_left {X : → M} {y : M} (k : ) (H : X ⟶ y in ) :
(λ n, X (k + n)) ⟶ y in :=
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
by rewrite aux; exact converges_to_seq_offset k H
proposition converges_to_seq_of_converges_to_seq_offset_left
{X : → M} {y : M} {k : } (H : (λ n, X (k + n)) ⟶ y in ) :
X ⟶ y in :=
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
by rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H
-/
proposition bounded_of_converges_seq {X : → M} {x : M} (H : X ⟶ x [at ∞]) :
∃ K : , ∀ n : , dist (X n) x ≤ K :=
have eventually (λ n, dist (X n) x < 1) [at ∞],
from approaches_dest H zero_lt_one,
obtain N (HN : ∀ n, n ≥ N → dist (X n) x < 1),
from eventually_at_infty_dest this,
let K := max 1 (Max i ∈ '(-∞, N), dist (X i) x) in
exists.intro K
(take n,
if Hn : n < N then
show dist (X n) x ≤ K,
from le.trans (le_Max _ Hn) !le_max_right
else
show dist (X n) x ≤ K,
from le.trans (le_of_lt (HN n (le_of_not_gt Hn))) !le_max_left)
/- cauchy sequences -/
definition cauchy (X : → M) : Prop :=
∀ ε : , ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε
proposition cauchy_of_converges_seq {X : → M} (H : ∃ y, X ⟶ y [at ∞]) : cauchy X :=
take ε, suppose ε > 0,
obtain y (Hy : X ⟶ y [at ∞]), from H,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
have eventually (λ n, dist (X n) y < ε / 2) [at ∞], from approaches_dest Hy e2pos,
obtain N (HN : ∀ {n}, n ≥ N → dist (X n) y < ε / 2), from eventually_at_infty_dest this,
exists.intro N
(take m n, suppose m ≥ N, suppose n ≥ N,
have dN₁ : dist (X m) y < ε / 2, from HN `m ≥ N`,
have dN₂ : dist (X n) y < ε / 2, from HN `n ≥ N`,
show dist (X m) (X n) < ε, from calc
dist (X m) (X n) ≤ dist (X m) y + dist y (X n) : dist_triangle
... = dist (X m) y + dist (X n) y : dist_comm
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
... = ε : add_halves)
end metric_space_M
/- convergence of a function at a point -/
section metric_space_M_N
variables {M N : Type} [metric_space M] [metric_space N]
/-
definition converges_to_at (f : M → N) (y : N) (x : M) :=
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ≠ x ∧ dist x' x < δ → dist (f x') y < ε
notation f `⟶` y `at` x := converges_to_at f y x
theorem converges_to_at_constant (y : N) (x : M) : (λ m, y) ⟶ y at x :=
begin
intros ε Hε,
existsi 1,
split,
exact zero_lt_one,
intros x' Hx',
rewrite dist_self,
apply Hε
end
definition converges_at [class] (f : M → N) (x : M) :=
∃ y, converges_to_at f y x
noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N :=
some H
proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] :
(f ⟶ limit_at f x at x) :=
some_spec H
-/
-- TODO: refactor
section
open pnat rat
private lemma of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat (p : pnat) :
of_rat (rat_of_pnat p) = of_nat (nat_of_pnat p) :=
rfl
theorem cnv_real_of_cnv_nat {X : → M} {c : M} (H : ∀ n : , dist (X n) c < 1 / (real.of_nat n + 1)) :
∀ ε : , ε > 0 → ∃ N : , ∀ n : , n ≥ N → dist (X n) c < ε :=
begin
intros ε Hε,
cases ex_rat_pos_lower_bound_of_pos Hε with q Hq,
cases Hq with Hq1 Hq2,
cases pnat_bound Hq1 with p Hp,
existsi pnat.nat_of_pnat p,
intros n Hn,
apply lt_of_lt_of_le,
apply H,
apply le.trans,
rotate 1,
apply Hq2,
have Hrat : of_rat (inv p) ≤ of_rat q, from of_rat_le_of_rat_of_le Hp,
apply le.trans,
rotate 1,
exact Hrat,
change 1 / (of_nat n + 1) ≤ of_rat ((1 : ) / (rat_of_pnat p)),
rewrite [of_rat_divide, of_rat_one],
eapply one_div_le_one_div_of_le,
krewrite -of_rat_zero,
apply of_rat_lt_of_rat_of_lt,
apply rat_of_pnat_is_pos,
krewrite [of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat, -real.of_nat_add],
apply real.of_nat_le_of_nat_of_le,
apply le_add_of_le_right,
assumption
end
end
-- a nice illustration of the limit library: [at c] and [at ∞] can be replaced by any filters
theorem comp_approaches_at_infty {f : M → N} {c : M} {l : N} (Hf : f ⟶ l [at c])
{X : → M} (HX₁ : X ⟶ c [at ∞]) (HX₂ : eventually (λ n, X n ≠ c) [at ∞]) :
(λ n, f (X n)) ⟶ l [at ∞] :=
tendsto_comp_of_approaches_of_tendsto_at HX₁ HX₂ Hf
-- TODO: refactor
theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N)
(Hseq : ∀ X : → M, ((∀ n : , ((X n) ≠ c) ∧ (X ⟶ c [at ∞])) → ((λ n : , f (X n)) ⟶ l [at ∞])))
: f ⟶ l [at c] :=
by_contradiction
(assume Hnot : ¬ (f ⟶ l [at c]),
obtain ε Hε, from exists_not_of_not_forall (λ H, Hnot (approaches_at_intro H)),
let Hε' := and_not_of_not_implies Hε in
obtain (H1 : ε > 0) H2, from Hε',
have H3 : ∀ δ : , (δ > 0 → ∃ x' : M, x' ≠ c ∧ dist x' c < δ ∧ dist (f x') l ≥ ε), begin -- tedious!!
intros δ Hδ,
note Hε'' := forall_not_of_not_exists H2,
note H4 := forall_not_of_not_exists H2 δ,
have ¬ (∀ x' : M, dist x' c < δ → x' ≠ c → dist (f x') l < ε),
from λ H', H4 (and.intro Hδ H'),
note H5 := exists_not_of_not_forall this,
cases H5 with x' Hx',
existsi x',
note H6 := and_not_of_not_implies Hx',
-- rewrite and.assoc at H6,
cases H6 with H6a H6b,
split,
cases (and_not_of_not_implies H6b),
assumption,
split,
assumption,
apply le_of_not_gt,
cases (and_not_of_not_implies H6b),
assumption
end,
let S : → M → Prop := λ n x, 0 < dist x c ∧ dist x c < 1 / (of_nat n + 1) ∧ dist (f x) l ≥ ε in
have HS : ∀ n : , ∃ m : M, S n m, begin
intro k,
have Hpos : 0 < of_nat k + 1, from of_nat_succ_pos k,
cases H3 (1 / (k + 1)) (one_div_pos_of_pos Hpos) with x' Hx',
cases Hx' with Hne Hx',
cases Hx' with Hdistl Hdistg,
existsi x',
esimp,
split,
apply dist_pos_of_ne,
assumption,
split,
repeat assumption
end,
let X : → M := λ n, some (HS n) in
have H4 : ∀ n : , ((X n) ≠ c) ∧ (X ⟶ c [at ∞]), from
(take n, and.intro
(begin
note Hspec := some_spec (HS n),
esimp, esimp at Hspec,
cases Hspec,
apply ne_of_dist_pos,
assumption
end)
(begin
apply approaches_at_infty_intro,
apply cnv_real_of_cnv_nat,
intro m,
note Hspec := some_spec (HS m),
esimp, esimp at Hspec,
cases Hspec with Hspec1 Hspec2,
cases Hspec2,
assumption
end)),
have H5 : (λ n : , f (X n)) ⟶ l [at ∞], from Hseq X H4,
begin
note H6 := approaches_at_infty_dest H5 H1,
cases H6 with Q HQ,
note HQ' := HQ !le.refl,
esimp at HQ',
apply absurd HQ',
apply not_lt_of_ge,
note H7 := some_spec (HS Q),
esimp at H7,
cases H7 with H71 H72,
cases H72,
assumption
end)
end metric_space_M_N
section continuity
variables {M N : Type} [Hm : metric_space M] [Hn : metric_space N]
include Hm Hn
open topology set
/- begin
intros x Hx ε Hε,
rewrite [↑continuous_on at Hfs],
cases @Hfs (open_ball (f x) ε) !open_ball_open with t Ht,
cases Ht with Ht Htx,
cases @Hfx (open_ball (f x) ε) !open_ball_open (mem_open_ball _ Hε) with V HV,
cases HV with HV HVx,
cases HVx with HVx HVf,
cases ex_Open_ball_subset_of_Open_of_nonempty HV HVx with δ Hδ,
cases Hδ with Hδ Hδx,
existsi δ,
split,
exact Hδ,
intro x' Hx',
rewrite dist_comm,
apply and.right,
apply HVf,
apply Hδx,
apply and.intro !mem_univ,
rewrite dist_comm,
apply Hx',
end-/
/- continuity at a point -/
-- the ε - δ definition of continuity is equivalent to the topological definition
theorem continuous_at_intro {f : M → N} {x : M}
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
continuous_at f x :=
begin
rewrite ↑continuous_at,
intros U Uopen HfU,
cases exists_open_ball_subset_of_Open_of_mem Uopen HfU with r Hr,
cases Hr with Hr HUr,
cases H Hr with δ Hδ,
cases Hδ with Hδ Hx'δ,
existsi open_ball x δ,
split,
apply Open_open_ball,
split,
apply mem_open_ball,
exact Hδ,
intro y Hy,
apply mem_preimage,
apply HUr,
note Hy'' := Hx'δ Hy,
exact Hy''
end
theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε :=
begin
intros ε Hε,
rewrite [↑continuous_at at Hfx],
cases @Hfx (open_ball (f x) ε) !Open_open_ball (mem_open_ball _ Hε) with V HV,
cases HV with HV HVx,
cases HVx with HVx HVf,
cases exists_open_ball_subset_of_Open_of_mem HV HVx with δ Hδ,
cases Hδ with Hδ Hδx,
existsi δ,
split,
exact Hδ,
intro x' Hx',
apply HVf,
apply Hδx,
apply Hx',
end
--<<<<<<< HEAD
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x [at x]) :
/-=======
theorem continuous_at_on_intro {f : M → N} {x : M} {s : set M}
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀₀ x' ∈ s, dist x' x < δ → dist (f x') (f x) < ε) :
continuous_at_on f x s :=
begin
intro t HOt Hfxt,
cases ex_Open_ball_subset_of_Open_of_nonempty HOt Hfxt with ε Hε,
cases H (and.left Hε) with δ Hδ,
existsi (open_ball x δ),
split,
apply open_ball_open,
split,
apply mem_open_ball,
apply and.left Hδ,
intro x' Hx',
apply mem_preimage,
apply mem_of_subset_of_mem,
apply and.right Hε,
apply and.intro !mem_univ,
rewrite dist_comm,
apply and.right Hδ,
apply and.right Hx',
rewrite dist_comm,
apply and.right (and.left Hx')
end
theorem continuous_at_on_elim {f : M → N} {x : M} {s : set M} (Hfs : continuous_at_on f x s) :
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀₀ x' ∈ s, dist x' x < δ → dist (f x') (f x) < ε :=
begin
intro ε Hε,
unfold continuous_at_on at Hfs,
cases @Hfs (open_ball (f x) ε) !open_ball_open (mem_open_ball _ Hε) with u Hu,
cases Hu with Huo Hu,
cases Hu with Hxu Hu,
cases ex_Open_ball_subset_of_Open_of_nonempty Huo Hxu with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intros x' Hx's Hx'x,
have Hims : f ' (u ∩ s) ⊆ open_ball (f x) ε, begin
apply subset.trans (image_subset f Hu),
apply image_preimage_subset
end,
have Hx'int : x' ∈ u ∩ s, begin
apply and.intro,
apply mem_of_subset_of_mem,
apply and.right Hδ,
apply and.intro !mem_univ,
rewrite dist_comm,
repeat assumption
end,
have Hxx' : f x' ∈ open_ball (f x) ε, begin
apply mem_of_subset_of_mem,
apply Hims,
apply mem_image_of_mem,
apply Hx'int
end,
rewrite dist_comm,
apply and.right Hxx'
end
theorem continuous_on_intro {f : M → N} {s : set M}
(H : ∀ x, ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀₀ x' ∈ s, dist x' x < δ → dist (f x') (f x) < ε) :
continuous_on f s :=
begin
apply continuous_on_of_forall_continuous_at_on,
intro x,
apply continuous_at_on_intro,
apply H
end
theorem continuous_on_elim {f : M → N} {s : set M} (Hfs : continuous_on f s) :
∀₀ x ∈ s, ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀₀ x' ∈ s, dist x' x < δ → dist (f x') (f x) < ε :=
begin
intros x Hx,
exact continuous_at_on_elim (continuous_at_on_of_continuous_on Hfs Hx)
end-/
--theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
-->>>>>>> feat(theories/analysis): intro/elim rules for continuous_on, etc
continuous_at f x :=
continuous_at_intro
(take ε, suppose ε > 0,
obtain δ Hδ, from approaches_at_dest Hf this,
exists.intro δ (and.intro
(and.left Hδ)
(take x', suppose dist x' x < δ,
if Heq : x' = x then
by rewrite [-Heq, dist_self]; assumption
else
(suffices dist x' x < δ, from and.right Hδ x' this Heq,
this))))
theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_at f x) :
f ⟶ f x [at x] :=
approaches_at_intro
(take ε, suppose ε > 0,
obtain δ [δpos Hδ], from continuous_at_elim Hf this,
exists.intro δ (and.intro δpos (λ x' Hx' xnex', Hδ x' Hx')))
--definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x
theorem converges_seq_comp_of_converges_seq_of_cts (X : → M) [HX : converges_seq X] {f : M → N}
(Hf : continuous f) :
converges_seq (λ n, f (X n)) :=
begin
cases HX with xlim Hxlim,
existsi f xlim,
apply approaches_at_infty_intro,
intros ε Hε,
let Hcont := (continuous_at_elim (forall_continuous_at_of_continuous Hf xlim)) Hε,
cases Hcont with δ Hδ,
cases approaches_at_infty_dest Hxlim (and.left Hδ) with B HB,
existsi B,
intro n Hn,
apply and.right Hδ,
apply HB Hn
end
omit Hn
theorem id_continuous : continuous (λ x : M, x) :=
begin
apply continuous_of_forall_continuous_at,
intros x,
apply continuous_at_intro,
intro ε Hε,
existsi ε,
split,
assumption,
intros,
assumption
end
end continuity
end analysis
/- complete metric spaces -/
structure complete_metric_space [class] (M : Type) extends metricM : metric_space M : Type :=
(complete : ∀ X, @analysis.cauchy M metricM X → @analysis.converges_seq M metricM X)
namespace analysis
proposition complete (M : Type) [cmM : complete_metric_space M] {X : → M} (H : cauchy X) :
converges_seq X :=
complete_metric_space.complete X H
end analysis
/- the reals form a metric space -/
noncomputable definition metric_space_real [instance] : metric_space :=
⦃ metric_space,
dist := λ x y, abs (x - y),
dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end,
eq_of_dist_eq_zero := λ x y, eq_of_abs_sub_eq_zero,
dist_comm := abs_sub,
dist_triangle := abs_sub_le