This commit also simplifies the method check_pi in the type_checker and type_inferer.
It also fixes process_meta_app in the elaborator.
The problem was in the method process_meta_app and process_meta_inst.
They were processing convertability constrains as equality constraints.
For example, process_meta_app would handle
ctx |- Type << ?f b
as
ctx |- Type =:= ?f b
This is not correct because a ?f that returns (Type U) for b satisfies the first but not the second.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This modification was motivated by a bug exposed by tst17 at tests/kernel/type_checker.
metavar_env is now a smart point to metavar_env_cell.
ro_metavar_env is a read-only smart pointer. It is useful to make sure we are using proof_state correctly.
example showing that the approach for caching metavar_env is broken in the type_checker
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
http://luajit.org/install.html
If you're building a 64 bit application on OSX which links directly or
indirectly against LuaJIT, you need to link your main executable with
these flags:
-pagezero_size 10000 -image_base 100000000
The environment object is a "smart-pointer".
Before this commit, the use of "const &" for environment objects was broken.
For example, suppose we have a function f that should not modify the input environment.
Before this commit, its signature would be
void f(environment const & env)
This is broken, f's implementation can easilty convert it to a read-write pointer by using
the copy constructor.
environment rw_env(env);
Now, f can use rw_env to update env.
To fix this issue, we now have ro_environment. It is a shared *const* pointer.
We can convert an environment into a ro_environment, but not the other way around.
ro_environment can also be seen as a form of documentation.
For example, now it is clear that type_inferer is not updating the environment, since its constructor takes a ro_environment.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
Lean was spending 17% on the runtime "throwing exceptions" in the test tests/lean/implicit7.lean
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
Synthesizer is not part of the elaborator anymore.
The elaborator fills the "easy" holes.
The remaining holes are filled using different techniques (e.g., tactic framework) that are independent of the elaborator.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
On Linux, -D STATIC=ON does not work if MULTI_THREAD support is enabled.
If we search for "pthread static crash" we find other projects with the same problem.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit allows us to build Lean without the pthread dependency.
It is also useful if we want to implement multi-threading on top of Boost.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
After this commit, a value of type 'expr' cannot be a reference to nullptr.
This commit also fixes several bugs due to the use of 'null' expressions.
TODO: do the same for kernel objects, sexprs, etc.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
I also reduced the stack size to 8 Mb in the tests at tests/lean and tests/lean/slow. The idea is to simulate stackoverflow conditions.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
We flat applications. So, (g a b) is actually ((g a) b).
So, we must be able to unify (?f ?x) with (g a b).
Solution:
?g <- (g a)
?x <- b
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit fixes a problem exposed by t13.lean.
It has a theorem of the form:
Theorem T1 (A B : Bool) : A /\ B -> B /\ A :=
fun assumption : A /\ B,
let lemma1 := (show A by auto),
lemma2 := (show B by auto)
in (show B /\ A by auto)
When to_goal creates a goal for the metavariable associated with (show B /\ A by auto) it receives a context and proposition of the form
[ A : Bool, B : Bool, assumption : A /\ B, lemma1 := Conjunct1 assumption, lemma2 := Conjunct2 assumption ] |- B /\ A
The context_entries "lemma1 := Conjunct1 assumption" and "lemma2 := Conjunct2 assumption" do not have a domain (aka type).
Before this commit, to_goal would simply replace and references to "lemma1" and "lemma2" in "B /\ A" with their definitions.
Note that, "B /\ A" does not contain references to "lemma1" and "lemma2". Then, the following goal is created
A : Bool, B : Bool, assumption : A /\ B |- B /\ A
That is, the lemmas are not available when solving B /\ A.
Thus, the tactic auto produced the following (weird) proof for T1, where the lemmas are computed but not used.
Theorem T1 (A B : Bool) (assumption : A ∧ B) : B ∧ A :=
let lemma1 := Conjunct1 assumption,
lemma2 := Conjunct2 assumption
in Conj (Conjunct2 assumption) (Conjunct1 assumption)
This commit fixed that. It computes the types of "Conjunct1 assumption" and "Conjunct2 assumption", and creates the goal
A : Bool, B : Bool, assumption : A /\ B, lemma1 : A, lemma2 : B |- B /\ A
After this commit, the proof for theorem T1 is
Theorem T1 (A B : Bool) (assumption : A ∧ B) : B ∧ A :=
let lemma1 := Conjunct1 assumption,
lemma2 := Conjunct2 assumption
in Conj lemma2 lemma1
as expected.
Finally, this example suggests that the encoding
Theorem T1 (A B : Bool) : A /\ B -> B /\ A :=
fun assumption : A /\ B,
let lemma1 : A := (by auto),
lemma2 : B := (by auto)
in (show B /\ A by auto)
is more efficient than
Theorem T1 (A B : Bool) : A /\ B -> B /\ A :=
fun assumption : A /\ B,
let lemma1 := (show A by auto),
lemma2 := (show B by auto)
in (show B /\ A by auto)
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The type checker (and type inferer) were not handling correctly Pi expressions where the type universe cannot be established due to the occurrence of metavariables. In this case, a max-constraint is created. The problem is that the domain and body of the Pi are in different contexts. The constrain generated before this commit was incorrect, it could contain a free variable. This commit fix the issue by using the context of the body, and lifting the free variables in the domain by 1.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit improves the condition for showing that an equality(and convertability) constraint cannot be solved. A nice consequence is that Lean produces nicer error messages. For example, the error message for unit test elab1.lean is more informative.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>