Spectral/homotopy/spectrum.hlean

363 lines
16 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Michael Shulman. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Michael Shulman, Floris van Doorn
-/
import homotopy.LES_of_homotopy_groups .splice homotopy.susp ..move_to_lib
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
/---------------------
Basic definitions
---------------------/
open succ_str
/- The basic definitions of spectra and prespectra make sense for any successor-structure. -/
structure gen_prespectrum (N : succ_str) :=
(deloop : N → Type*)
(glue : Π(n:N), (deloop n) →* (Ω (deloop (S n))))
attribute gen_prespectrum.deloop [coercion]
structure is_spectrum [class] {N : succ_str} (E : gen_prespectrum N) :=
(is_equiv_glue : Πn, is_equiv (gen_prespectrum.glue E n))
attribute is_spectrum.is_equiv_glue [instance]
structure gen_spectrum (N : succ_str) :=
(to_prespectrum : gen_prespectrum N)
(to_is_spectrum : is_spectrum to_prespectrum)
attribute gen_spectrum.to_prespectrum [coercion]
attribute gen_spectrum.to_is_spectrum [instance]
-- Classically, spectra and prespectra use the successor structure +.
-- But we will use + instead, to reduce case analysis later on.
abbreviation spectrum := gen_spectrum +
abbreviation spectrum.mk := @gen_spectrum.mk +
namespace spectrum
definition glue {{N : succ_str}} := @gen_prespectrum.glue N
--definition glue := (@gen_prespectrum.glue +)
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
-- Sometimes an -indexed version does arise naturally, however, so
-- we give a standard way to extend an -indexed (pre)spectrum to a
-- -indexed one.
definition psp_of_nat_indexed [constructor] (E : gen_prespectrum +) : gen_prespectrum + :=
gen_prespectrum.mk
(λ(n:), match n with
| of_nat k := E k
| neg_succ_of_nat k := Ω[succ k] (E 0)
end)
begin
intros n, cases n with n n: esimp,
{ exact (gen_prespectrum.glue E n) },
cases n with n,
{ exact (pid _) },
{ exact (pid _) }
end
definition is_spectrum_of_nat_indexed [instance] (E : gen_prespectrum +) [H : is_spectrum E] : is_spectrum (psp_of_nat_indexed E) :=
begin
apply is_spectrum.mk, intros n, cases n with n n: esimp,
{ apply is_spectrum.is_equiv_glue },
cases n with n: apply is_equiv_id
end
protected definition of_nat_indexed (E : gen_prespectrum +) [H : is_spectrum E] : spectrum
:= spectrum.mk (psp_of_nat_indexed E) (is_spectrum_of_nat_indexed E)
-- In fact, a (pre)spectrum indexed on any pointed successor structure
-- gives rise to one indexed on +, so in this sense + is a
-- "universal" successor structure for indexing spectra.
definition succ_str.of_nat {N : succ_str} (z : N) : → N
| succ_str.of_nat zero := z
| succ_str.of_nat (succ k) := S (succ_str.of_nat k)
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : gen_prespectrum + :=
psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n)))
definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E]
: is_spectrum (psp_of_gen_indexed z E) :=
begin
apply is_spectrum_of_nat_indexed, apply is_spectrum.mk, intros n, esimp, apply is_spectrum.is_equiv_glue
end
protected definition of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_spectrum N) : spectrum :=
spectrum.mk (psp_of_gen_indexed z E) (is_spectrum_of_gen_indexed z E)
-- Generally it's easiest to define a spectrum by giving 'equiv's
-- directly. This works for any indexing succ_str.
protected definition MK {N : succ_str} (deloop : N → Type*) (glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N :=
gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n))
(begin
apply is_spectrum.mk, intros n, esimp,
apply pequiv.to_is_equiv -- Why doesn't typeclass inference find this?
end)
-- Finally, we combine them and give a way to produce a (-)spectrum from a -indexed family of 'equiv's.
protected definition Mk (deloop : → Type*) (glue : Π(n:), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum :=
spectrum.of_nat_indexed (spectrum.MK deloop glue)
2016-03-22 16:53:16 +00:00
------------------------------
-- Maps and homotopies of (pre)spectra
------------------------------
-- These make sense for any succ_str.
structure smap {N : succ_str} (E F : gen_prespectrum N) :=
(to_fun : Π(n:N), E n →* F n)
(glue_square : Π(n:N), glue F n ∘* to_fun n ~* Ω→ (to_fun (S n)) ∘* glue E n)
open smap
infix ` →ₛ `:30 := smap
attribute smap.to_fun [coercion]
-- A version of 'glue_square' in the spectrum case that uses 'equiv_glue'
definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N)
: equiv_glue F n ∘* f n ~* Ω→ (f (S n)) ∘* equiv_glue E n
2016-03-22 16:53:16 +00:00
-- I guess this manual eta-expansion is necessary because structures lack definitional eta?
:= phomotopy.mk (glue_square f n) (to_homotopy_pt (glue_square f n))
2016-03-22 16:53:16 +00:00
definition sid {N : succ_str} (E : gen_spectrum N) : E →ₛ E :=
smap.mk (λn, pid (E n))
(λn, calc glue E n ∘* pid (E n) ~* glue E n : comp_pid
... ~* pid (Ω(E (S n))) ∘* glue E n : pid_comp
2016-03-22 16:53:16 +00:00
... ~* Ω→(pid (E (S n))) ∘* glue E n : pwhisker_right (glue E n) ap1_id⁻¹*)
definition scompose {N : succ_str} {X Y Z : gen_prespectrum N} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
smap.mk (λn, g n ∘* f n)
(λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n
~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc
... ~* (Ω→(to_fun g (S n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
... ~* Ω→(to_fun g (S n)) ∘* (glue Y n ∘* to_fun f n) : passoc
... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (S n)) (glue_square f n)
... ~* (Ω→(to_fun g (S n)) ∘* Ω→(f (S n))) ∘* glue X n : passoc
... ~* Ω→(to_fun g (S n) ∘* to_fun f (S n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_compose _ _))
infixr ` ∘ₛ `:60 := scompose
2016-03-22 16:53:16 +00:00
definition szero {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F :=
smap.mk (λn, pconst (E n) (F n))
(λn, calc glue F n ∘* pconst (E n) (F n) ~* pconst (E n) (Ω(F (S n))) : pcompose_pconst
... ~* pconst (Ω(E (S n))) (Ω(F (S n))) ∘* glue E n : pconst_pcompose
... ~* Ω→(pconst (E (S n)) (F (S n))) ∘* glue E n : pwhisker_right (glue E n) (ap1_pconst _ _))
structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) :=
(to_phomotopy : Πn, f n ~* g n)
(glue_homotopy : Πn, pwhisker_left (glue F n) (to_phomotopy n) ⬝* glue_square g n
= -- Ideally this should be a "phomotopy2"
glue_square f n ⬝* pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n))))
infix ` ~ₛ `:50 := shomotopy
------------------------------
-- Suspension prespectra
------------------------------
-- This should probably go in 'susp'
definition psuspn : → Type* → Type*
| psuspn 0 X := X
| psuspn (succ n) X := psusp (psuspn n X)
-- Suspension prespectra are one that's naturally indexed on the natural numbers
definition psp_susp (X : Type*) : gen_prespectrum + :=
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_susp_unit (psuspn n X))
/- Truncations -/
-- We could truncate prespectra too, but since the operation
-- preserves spectra and isn't "correct" acting on prespectra
-- without spectrifying them first anyway, why bother?
definition strunc (k : ℕ₋₂) (E : spectrum) : spectrum :=
spectrum.Mk (λ(n:), ptrunc (k + n) (E n))
(λ(n:), (loop_ptrunc_pequiv (k + n) (E (succ n)))⁻¹ᵉ*
∘*ᵉ (ptrunc_pequiv_ptrunc (k + n) (equiv_glue E (int.of_nat n))))
/---------------------
Homotopy groups
---------------------/
-- Here we start to reap the rewards of using -indexing: we can
-- read off the homotopy groups without any tedious case-analysis of
-- n. We increment by 2 in order to ensure that they are all
-- automatically abelian groups.
definition shomotopy_group [constructor] (n : ) (E : spectrum) : CommGroup := πag[0+2] (E (2 - n))
notation `πₛ[`:95 n:0 `]`:0 := shomotopy_group n
definition shomotopy_group_fun [constructor] (n : ) {E F : spectrum} (f : E →ₛ F) :
πₛ[n] E →g πₛ[n] F :=
π→g[1+1] (f (2 - n))
notation `πₛ→[`:95 n:0 `]`:0 := shomotopy_group_fun n
/-------------------------------
Cotensor of spectra by types
-------------------------------/
-- Makes sense for any indexing succ_str. Could be done for
-- prespectra too, but as with truncation, why bother?
definition sp_cotensor {N : succ_str} (A : Type*) (B : gen_spectrum N) : gen_spectrum N :=
spectrum.MK (λn, ppmap A (B n))
(λn, (loop_pmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (equiv_ppcompose_left (equiv_glue B n)))
----------------------------------------
-- Sections of parametrized spectra
----------------------------------------
definition spi {N : succ_str} (A : Type) (E : A -> gen_spectrum N) : gen_spectrum N :=
spectrum.MK (λn, ppi (λa, E a n))
(λn, (loop_ppi_commute (λa, E a (S n)))⁻¹ᵉ* ∘*ᵉ equiv_ppi_right (λa, equiv_glue (E a) n))
/-----------------------------------------
Fibers and long exact sequences
-----------------------------------------/
definition sfiber {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : gen_spectrum N :=
spectrum.MK (λn, pfiber (f n))
(λn, pfiber_loop_space (f (S n)) ∘*ᵉ pfiber_equiv_of_square (sglue_square f n))
/- the map from the fiber to the domain. The fact that the square commutes requires work -/
definition spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : sfiber f →ₛ X :=
smap.mk (λn, ppoint (f n))
begin
intro n, exact sorry
end
definition π_glue (X : spectrum) (n : ) : π*[2] (X (2 - succ n)) ≃* π*[3] (X (2 - n)) :=
begin
2016-09-15 20:24:01 +00:00
refine phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)) ⬝e* _,
assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
exact pequiv_of_eq (ap (λn, π*[2] (Ω (X n))) H),
end
definition πg_glue (X : spectrum) (n : ) : πg[1+1] (X (2 - succ n)) ≃g πg[2+1] (X (2 - n)) :=
begin
refine homotopy_group_isomorphism_of_pequiv 1 (equiv_glue X (2 - succ n)) ⬝g _,
assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
exact isomorphism_of_eq (ap (λn, πg[1+1] (Ω (X n))) H),
end
definition πg_glue_homotopy_π_glue (X : spectrum) (n : ) : πg_glue X n ~ π_glue X n :=
begin
intro x,
esimp [πg_glue, π_glue],
apply ap (λp, cast p _),
refine !ap_compose'⁻¹ ⬝ !ap_compose'
end
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ) :
π_glue Y n ∘* π→*[2] (f (2 - succ n)) ~* π→*[3] (f (2 - n)) ∘* π_glue X n :=
2016-09-15 20:24:01 +00:00
begin
refine !passoc ⬝* _,
assert H1 : phomotopy_group_pequiv 2 (equiv_glue Y (2 - succ n)) ∘* π→*[2] (f (2 - succ n))
~* π→*[2] (Ω→ (f (succ (2 - succ n)))) ∘* phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)),
{ refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
refine phomotopy_group_functor_phomotopy 2 !sglue_square ⬝* _,
apply phomotopy_group_functor_compose },
refine pwhisker_left _ H1 ⬝* _, clear H1,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
apply pwhisker_right,
refine !pequiv_of_eq_commute ⬝* by reflexivity
2016-09-15 20:24:01 +00:00
end
section
open chain_complex prod fin group
universe variable u
parameters {X Y : spectrum.{u}} (f : X →ₛ Y)
definition LES_of_shomotopy_groups : chain_complex +3 :=
splice (λ(n : ), LES_of_homotopy_groups (f (2 - n))) (2, 0)
(π_glue Y) (π_glue X) (π_glue_square f)
-- This LES is definitionally what we want:
example (n : ) : LES_of_shomotopy_groups (n, 0) = πₛ[n] Y := idp
example (n : ) : LES_of_shomotopy_groups (n, 1) = πₛ[n] X := idp
example (n : ) : LES_of_shomotopy_groups (n, 2) = πₛ[n] (sfiber f) := idp
example (n : ) : cc_to_fn LES_of_shomotopy_groups (n, 0) = πₛ→[n] f := idp
example (n : ) : cc_to_fn LES_of_shomotopy_groups (n, 1) = πₛ→[n] (spoint f) := idp
-- the maps are ugly for (n, 2)
definition comm_group_LES_of_shomotopy_groups : Π(v : +3), comm_group (LES_of_shomotopy_groups v)
| (n, fin.mk 0 H) := proof CommGroup.struct (πₛ[n] Y) qed
| (n, fin.mk 1 H) := proof CommGroup.struct (πₛ[n] X) qed
| (n, fin.mk 2 H) := proof CommGroup.struct (πₛ[n] (sfiber f)) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
local attribute comm_group_LES_of_shomotopy_groups [instance]
definition is_homomorphism_LES_of_shomotopy_groups :
Π(v : +3), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v)
| (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed
2016-09-15 20:24:01 +00:00
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
| (n, fin.mk 2 H) := proof homomorphism.struct
(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g
homomorphism_change_fun (πg_glue Y n) _ (πg_glue_homotopy_π_glue Y n)) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
-- In the comments below is a start on an explicit description of the LES for spectra
-- Maybe it's slightly nicer to work with than the above version
-- definition shomotopy_groups [reducible] : -3 → CommGroup
-- | (n, fin.mk 0 H) := πₛ[n] Y
-- | (n, fin.mk 1 H) := πₛ[n] X
-- | (n, fin.mk k H) := πₛ[n] (sfiber f)
-- definition shomotopy_groups_fun : Π(n : -3), shomotopy_groups (S n) →g shomotopy_groups n
-- | (n, fin.mk 0 H) := proof π→g[1+1] (f (n + 2)) qed --π→*[2] f (n+2)
-- --pmap_of_homomorphism (πₛ→[n] f)
-- | (n, fin.mk 1 H) := proof π→g[1+1] (ppoint (f (n + 2))) qed
-- | (n, fin.mk 2 H) :=
-- proof _ ∘g π→g[1+1] equiv_glue Y (pred n + 2) qed
-- --π→*[n] boundary_map ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y n))
-- | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
end
2016-03-22 16:53:16 +00:00
structure sp_chain_complex (N : succ_str) : Type :=
(car : N → spectrum)
(fn : Π(n : N), car (S n) →ₛ car n)
(is_chain_complex : Πn, fn n ∘ₛ fn (S n) ~ₛ szero _ _)
section
variables {N : succ_str} (X : sp_chain_complex N) (n : N)
definition scc_to_car [unfold 2] [coercion] := @sp_chain_complex.car
definition scc_to_fn [unfold 2] : X (S n) →ₛ X n := sp_chain_complex.fn X n
definition scc_is_chain_complex [unfold 2] : scc_to_fn X n ∘ₛ scc_to_fn X (S n) ~ₛ szero _ _
:= sp_chain_complex.is_chain_complex X n
end
/- Mapping spectra -/
2016-09-16 01:20:16 +00:00
definition mapping_prespectrum [constructor] {N : succ_str} (X : Type*) (Y : gen_prespectrum N) :
gen_prespectrum N :=
gen_prespectrum.mk (λn, ppmap X (Y n)) (λn, pfunext X (Y (S n)) ∘* ppcompose_left (glue Y n))
definition mapping_spectrum [constructor] {N : succ_str} (X : Type*) (Y : gen_spectrum N) :
gen_spectrum N :=
gen_spectrum.mk
(mapping_prespectrum X Y)
(is_spectrum.mk (λn, to_is_equiv (equiv_ppcompose_left (equiv_glue Y n) ⬝e
pfunext X (Y (S n)))))
/- Spectrification -/
/- Tensor by spaces -/
/- Smash product of spectra -/
/- Cofibers and stability -/
end spectrum