Spectral/algebra/quotient_group.hlean

492 lines
17 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import hit.set_quotient .subgroup ..move_to_lib
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv
namespace group
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
variables {A B : AbGroup}
/- Quotient Group -/
2016-11-03 19:12:46 +00:00
definition homotopy_of_homomorphism_eq {f g : G →g G'}(p : f = g) : f ~ g :=
λx : G , ap010 group_fun p x
definition quotient_rel (g h : G) : Prop := N (g * h⁻¹)
variable {N}
-- We prove that quotient_rel is an equivalence relation
theorem quotient_rel_refl (g : G) : quotient_rel N g g :=
transport (λx, N x) !mul.right_inv⁻¹ (subgroup_has_one N)
theorem quotient_rel_symm (r : quotient_rel N g h) : quotient_rel N h g :=
transport (λx, N x) (!mul_inv ⬝ ap (λx, x * _) !inv_inv) (subgroup_respect_inv N r)
theorem quotient_rel_trans (r : quotient_rel N g h) (s : quotient_rel N h k)
: quotient_rel N g k :=
have H1 : N ((g * h⁻¹) * (h * k⁻¹)), from subgroup_respect_mul N r s,
have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc
(g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)]
... = g * k⁻¹ : by rewrite inv_mul_cancel_right,
show N (g * k⁻¹), by rewrite [-H2]; exact H1
theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel N) :=
is_equivalence.mk quotient_rel_refl
(λg h, quotient_rel_symm)
(λg h k, quotient_rel_trans)
-- We prove that quotient_rel respects inverses and multiplication, so
-- it is a congruence relation
theorem quotient_rel_resp_inv (r : quotient_rel N g h) : quotient_rel N g⁻¹ h⁻¹ :=
have H1 : N (g⁻¹ * (h * g⁻¹) * g), from
is_normal_subgroup' N g (quotient_rel_symm r),
have H2 : g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h⁻¹⁻¹, from calc
g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc
... = g⁻¹ * h : inv_mul_cancel_right
... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv,
show N (g⁻¹ * h⁻¹⁻¹), by rewrite [-H2]; exact H1
theorem quotient_rel_resp_mul (r : quotient_rel N g h) (r' : quotient_rel N g' h')
: quotient_rel N (g * g') (h * h') :=
have H1 : N (g * ((g' * h'⁻¹) * h⁻¹)), from
normal_subgroup_insert N r' r,
have H2 : g * ((g' * h'⁻¹) * h⁻¹) = (g * g') * (h * h')⁻¹, from calc
g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc]
... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc
... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv],
show N ((g * g') * (h * h')⁻¹), from transport (λx, N x) H2 H1
local attribute is_equivalence_quotient_rel [instance]
variable (N)
definition qg : Type := set_quotient (quotient_rel N)
variable {N}
local attribute qg [reducible]
definition quotient_one [constructor] : qg N := class_of one
definition quotient_inv [unfold 3] : qg N → qg N :=
quotient_unary_map has_inv.inv (λg g' r, quotient_rel_resp_inv r)
definition quotient_mul [unfold 3 4] : qg N → qg N → qg N :=
quotient_binary_map has_mul.mul (λg g' r h h' r', quotient_rel_resp_mul r r')
section
local notation 1 := quotient_one
local postfix ⁻¹ := quotient_inv
local infix * := quotient_mul
theorem quotient_mul_assoc (g₁ g₂ g₃ : qg N) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
begin
refine set_quotient.rec_prop _ g₁,
refine set_quotient.rec_prop _ g₂,
refine set_quotient.rec_prop _ g₃,
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
exact ap class_of !mul.assoc
end
theorem quotient_one_mul (g : qg N) : 1 * g = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !one_mul
end
theorem quotient_mul_one (g : qg N) : g * 1 = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !mul_one
end
theorem quotient_mul_left_inv (g : qg N) : g⁻¹ * g = 1 :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !mul.left_inv
end
theorem quotient_mul_comm {G : AbGroup} {N : normal_subgroup_rel G} (g h : qg N)
: g * h = h * g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
refine set_quotient.rec_prop _ h, clear h, intro h,
apply ap class_of, esimp, apply mul.comm
end
end
variable (N)
definition group_qg [constructor] : group (qg N) :=
group.mk _ quotient_mul quotient_mul_assoc quotient_one quotient_one_mul quotient_mul_one
quotient_inv quotient_mul_left_inv
definition quotient_group [constructor] : Group :=
Group.mk _ (group_qg N)
definition ab_group_qg [constructor] {G : AbGroup} (N : normal_subgroup_rel G)
: ab_group (qg N) :=
⦃ab_group, group_qg N, mul_comm := quotient_mul_comm⦄
definition quotient_ab_group [constructor] {G : AbGroup} (N : subgroup_rel G)
: AbGroup :=
AbGroup.mk _ (ab_group_qg (normal_subgroup_rel_ab N))
definition qg_map [constructor] : G →g quotient_group N :=
homomorphism.mk class_of (λ g h, idp)
2016-12-08 19:16:40 +00:00
definition ab_qg_map {G : AbGroup} (N : subgroup_rel G) : G →g quotient_ab_group N :=
2016-11-10 20:40:12 +00:00
begin
fapply homomorphism.mk,
exact class_of,
exact λ g h, idp
end
definition is_surjective_ab_qg_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_qg_map N) :=
2016-12-02 19:05:20 +00:00
begin
2016-12-08 19:16:40 +00:00
intro x, induction x,
2016-12-02 19:05:20 +00:00
fapply image.mk,
2016-12-08 19:16:40 +00:00
exact a, reflexivity,
apply is_prop.elimo
2016-12-02 19:05:20 +00:00
end
namespace quotient
notation `⟦`:max a `⟧`:0 := qg_map a _
end quotient
open quotient
variable {N}
definition qg_map_eq_one (g : G) (H : N g) : qg_map N g = 1 :=
begin
apply eq_of_rel,
have e : (g * 1⁻¹ = g),
from calc
g * 1⁻¹ = g * 1 : one_inv
... = g : mul_one,
unfold quotient_rel, rewrite e, exact H
end
2016-12-08 19:16:40 +00:00
definition ab_qg_map_eq_one {K : subgroup_rel A} (g :A) (H : K g) : ab_qg_map K g = 1 :=
2016-11-10 21:23:07 +00:00
begin
apply eq_of_rel,
have e : (g * 1⁻¹ = g),
from calc
g * 1⁻¹ = g * 1 : one_inv
... = g : mul_one,
unfold quotient_rel, xrewrite e, exact H
2016-11-10 21:23:07 +00:00
end
--- there should be a smarter way to do this!! Please have a look, Floris.
definition rel_of_qg_map_eq_one (g : G) (H : qg_map N g = 1) : N g :=
begin
have e : (g * 1⁻¹ = g),
from calc
g * 1⁻¹ = g * 1 : one_inv
... = g : mul_one,
rewrite (inverse e),
apply rel_of_eq _ H
end
2017-02-17 03:26:06 +00:00
definition rel_of_ab_qg_map_eq_one {K : subgroup_rel A} (a :A) (H : ab_qg_map K a = 1) : K a :=
begin
have e : (a * 1⁻¹ = a),
from calc
a * 1⁻¹ = a * 1 : one_inv
... = a : mul_one,
rewrite (inverse e),
apply rel_of_eq _ H
end
definition quotient_group_elim_fun [unfold 6] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1)
(g : quotient_group N) : G' :=
begin
refine set_quotient.elim f _ g,
intro g h K,
apply eq_of_mul_inv_eq_one,
have e : f (g * h⁻¹) = f g * (f h)⁻¹,
from calc
f (g * h⁻¹) = f g * (f h⁻¹) : to_respect_mul
... = f g * (f h)⁻¹ : to_respect_inv,
rewrite (inverse e),
apply H, exact K
end
definition quotient_group_elim [constructor] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group N →g G' :=
begin
fapply homomorphism.mk,
-- define function
{ exact quotient_group_elim_fun f H },
{ intro g h, induction g using set_quotient.rec_prop with g,
induction h using set_quotient.rec_prop with h,
krewrite (inverse (to_respect_mul (qg_map N) g h)),
unfold qg_map, esimp, exact to_respect_mul f g h }
end
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
quotient_group_elim f H ∘g qg_map N ~ f :=
begin
intro g, reflexivity
end
2016-11-03 19:12:46 +00:00
definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G')
: ( k ∘g qg_map N ~ f ) → k ~ quotient_group_elim f H :=
begin
intro K cg, induction cg using set_quotient.rec_prop with g,
exact K g
end
2017-03-02 22:11:06 +00:00
definition ab_gelim_unique {K : subgroup_rel A} (f : A →g B) (H : Π (a :A), K a → f a = 1) (k : quotient_ab_group K →g B)
: ( k ∘g ab_qg_map K ~ f) → k ~ quotient_group_elim f H :=
begin
fapply gelim_unique,
end
definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
2017-03-02 22:11:06 +00:00
is_contr (Σ(g : quotient_group N →g G'), g ∘g qg_map N ~ f) :=
2016-11-03 19:12:46 +00:00
begin
fapply is_contr.mk,
-- give center of contraction
2017-03-02 22:11:06 +00:00
{ fapply sigma.mk, exact quotient_group_elim f H, exact quotient_group_compute f H },
2016-11-03 19:12:46 +00:00
-- give contraction
{ intro pair, induction pair with g p, fapply sigma_eq,
2017-03-02 22:11:06 +00:00
{esimp, apply homomorphism_eq, symmetry, exact gelim_unique f H g p},
2016-11-03 19:12:46 +00:00
{fapply is_prop.elimo} }
end
2017-03-02 22:11:06 +00:00
definition ab_qg_universal_property {K : subgroup_rel A} (f : A →g B) (H : Π (a :A), K a → f a = 1) :
is_contr ((Σ(g : quotient_ab_group K →g B), g ∘g ab_qg_map K ~ f) ) :=
begin
fapply qg_universal_property,
exact H
end
2016-12-02 19:05:20 +00:00
------------------------------------------------
-- FIRST ISOMORPHISM THEOREM
2017-01-26 19:58:19 +00:00
------------------------------------------------
2016-12-02 19:05:20 +00:00
definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel_subgroup f) →g B :=
2016-12-02 19:05:20 +00:00
begin
fapply quotient_group_elim f, intro a, intro p, exact p
end
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
2016-12-08 19:16:40 +00:00
kernel_quotient_extension f ∘g ab_qg_map (kernel_subgroup f) ~ f :=
2016-12-02 19:05:20 +00:00
begin
intro a,
apply quotient_group_compute
end
definition is_embedding_kernel_quotient_extension {A B : AbGroup} (f : A →g B) :
2016-12-02 19:05:20 +00:00
is_embedding (kernel_quotient_extension f) :=
begin
fapply is_embedding_of_is_mul_hom,
intro x,
note H := is_surjective_ab_qg_map (kernel_subgroup f) x,
induction H, induction p,
intro q,
apply qg_map_eq_one,
refine _ ⬝ q,
symmetry,
rexact kernel_quotient_extension_triangle f a
end
2016-12-02 19:05:20 +00:00
definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B)
(p : Π(a:A), K(a) → L(f a)) : quotient_ab_group K →g quotient_ab_group L :=
2016-11-10 20:40:30 +00:00
begin
fapply quotient_group_elim,
2016-12-08 19:16:40 +00:00
exact (ab_qg_map L) ∘g f,
2016-11-10 21:23:07 +00:00
intro a,
intro k,
2016-12-08 19:16:40 +00:00
exact @ab_qg_map_eq_one B L (f a) (p a k),
2016-11-10 20:40:30 +00:00
end
definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
2016-11-17 21:25:14 +00:00
: Π a:A , kernel_subgroup(g)(a) → kernel_subgroup(f)(a) :=
begin
intro a,
intro p,
exact calc
f a = i (g a) : homotopy_of_eq (ap group_fun H) a
... = i 1 : ap i p
... = 1 : respect_one i
end
2016-12-01 21:34:01 +00:00
definition ab_group_triv_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g ) :
is_trivial_subgroup _ (kernel_subgroup(f)) → is_trivial_subgroup _ (kernel_subgroup(g)) :=
begin
intro p,
intro a,
intro q,
fapply p,
exact ab_group_kernel_factor f g H a q
2016-12-01 21:34:01 +00:00
end
definition triv_kern_is_embedding {A B : AbGroup} (f : A →g B):
is_trivial_subgroup _ (kernel_subgroup(f)) → is_embedding(f) :=
begin
intro p,
fapply is_embedding_of_is_mul_hom,
2016-12-01 21:34:01 +00:00
intro a q,
apply p,
exact q
end
definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
2016-11-17 21:25:14 +00:00
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
begin
intro a,
fapply iff.intro,
exact ab_group_kernel_factor f g H a,
2016-11-17 21:25:14 +00:00
intro p,
apply @is_injective_of_is_embedding _ _ i _ (g a) 1,
exact calc
i (g a) = f a : (homotopy_of_eq (ap group_fun H) a)⁻¹
... = 1 : p
... = i 1 : (respect_one i)⁻¹
end
definition ab_group_kernel_image_lift (A B : AbGroup) (f : A →g B)
2016-11-17 21:25:14 +00:00
: Π a : A, kernel_subgroup(image_lift(f))(a) ↔ kernel_subgroup(f)(a) :=
begin
fapply ab_group_kernel_equivalent (ab_image f) (f) (image_lift(f)) (image_incl(f)),
2016-11-17 21:25:14 +00:00
exact image_factor f,
exact is_embedding_of_is_injective (image_incl_injective(f)),
end
definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
: quotient_ab_group (kernel_subgroup f) →g ab_image (f) :=
2017-02-10 17:07:48 +00:00
begin
2016-12-01 21:34:01 +00:00
fapply quotient_group_elim (image_lift f), intro a, intro p,
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
2017-02-10 17:07:48 +00:00
end
2016-11-17 21:25:14 +00:00
2017-02-10 17:07:48 +00:00
definition ab_group_kernel_quotient_to_image_domain_triangle {A B : AbGroup} (f : A →g B)
: ab_group_kernel_quotient_to_image (f) ∘g ab_qg_map (kernel_subgroup (f)) ~ image_lift(f) :=
begin
intros a,
esimp,
end
definition ab_group_kernel_quotient_to_image_codomain_triangle {A B : AbGroup} (f : A →g B)
: image_incl f ∘g ab_group_kernel_quotient_to_image f ~ kernel_quotient_extension f :=
begin
intro x,
induction x,
reflexivity,
fapply is_prop.elimo
end
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
2016-12-01 21:34:01 +00:00
: is_surjective (ab_group_kernel_quotient_to_image f) :=
2016-11-17 21:25:14 +00:00
begin
fapply @is_surjective_factor A _ (image f) _ _ _ (group_fun (ab_qg_map (kernel_subgroup f))),
exact image_lift f,
apply quotient_group_compute,
exact is_surjective_image_lift f
2016-11-17 21:25:14 +00:00
end
2016-12-01 21:34:01 +00:00
definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
: is_embedding (ab_group_kernel_quotient_to_image f) :=
begin
fapply @is_embedding_factor _ (image f) B _ _ _ (ab_group_kernel_quotient_to_image f) (image_incl f) (kernel_quotient_extension f),
2017-02-10 17:07:48 +00:00
exact ab_group_kernel_quotient_to_image_codomain_triangle f,
exact is_embedding_kernel_quotient_extension f
2016-12-01 21:34:01 +00:00
end
2017-01-26 21:55:07 +00:00
definition ab_group_first_iso_thm {A B : AbGroup} (f : A →g B)
2017-01-26 19:58:19 +00:00
: quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
2016-12-01 21:34:01 +00:00
begin
fapply isomorphism.mk,
exact ab_group_kernel_quotient_to_image f,
fapply is_equiv_of_is_surjective_of_is_embedding,
exact is_embedding_kernel_quotient_to_image f,
exact is_surjective_kernel_quotient_to_image f
2016-12-01 21:34:01 +00:00
end
2017-01-26 22:44:22 +00:00
definition codomain_surjection_is_quotient {A B : AbGroup} (f : A →g B)( H : is_surjective f)
2017-01-26 21:55:07 +00:00
: quotient_ab_group (kernel_subgroup f) ≃g B :=
begin
exact (ab_group_first_iso_thm f) ⬝g (iso_surjection_ab_image_incl f H)
end
2016-12-01 21:34:01 +00:00
2017-02-10 17:07:48 +00:00
definition codomain_surjection_is_quotient_triangle {A B : AbGroup} (f : A →g B)( H : is_surjective f)
: codomain_surjection_is_quotient (f)(H) ∘g ab_qg_map (kernel_subgroup f) ~ f :=
begin
intro a,
esimp
end
2016-12-01 21:34:01 +00:00
-- print iff.mpr
/- set generating normal subgroup -/
section
parameters {A₁ : AbGroup} (S : A₁ → Prop)
variable {A₂ : AbGroup}
inductive generating_relation' : A₁ → Type :=
| rincl : Π{g}, S g → generating_relation' g
| rmul : Π{g h}, generating_relation' g → generating_relation' h → generating_relation' (g * h)
| rinv : Π{g}, generating_relation' g → generating_relation' g⁻¹
| rone : generating_relation' 1
open generating_relation'
definition generating_relation (g : A₁) : Prop := ∥ generating_relation' g ∥
local abbreviation R := generating_relation
definition gr_one : R 1 := tr (rone S)
definition gr_inv (g : A₁) : R g → R g⁻¹ :=
trunc_functor -1 rinv
definition gr_mul (g h : A₁) : R g → R h → R (g * h) :=
trunc_functor2 rmul
definition normal_generating_relation : subgroup_rel A₁ :=
⦃ subgroup_rel,
R := R,
Rone := gr_one,
Rinv := gr_inv,
Rmul := gr_mul⦄
parameter (A₁)
definition quotient_ab_group_gen : AbGroup := quotient_ab_group normal_generating_relation
definition gqg_map [constructor] : A₁ →g quotient_ab_group_gen :=
qg_map _
parameter {A₁}
definition gqg_eq_of_rel {g h : A₁} (H : S (g * h⁻¹)) : gqg_map g = gqg_map h :=
eq_of_rel (tr (rincl H))
definition gqg_elim [constructor] (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
: quotient_ab_group_gen →g A₂ :=
begin
apply quotient_group_elim f,
intro g r, induction r with r,
induction r with g s g h r r' IH1 IH2 g r IH,
{ exact H s },
{ exact !respect_mul ⬝ ap011 mul IH1 IH2 ⬝ !one_mul },
{ exact !respect_inv ⬝ ap inv IH ⬝ !one_inv },
{ apply respect_one }
end
definition gqg_elim_compute (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
: gqg_elim f H ∘g gqg_map ~ f :=
begin
intro g, reflexivity
end
definition gqg_elim_unique (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
(k : quotient_ab_group_gen →g A₂) : ( k ∘g gqg_map ~ f ) → k ~ gqg_elim f H :=
!gelim_unique
end
end group