Spectral/algebra/direct_sum.hlean

131 lines
4.5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import .quotient_group .free_commutative_group
open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops
namespace group
section
2017-06-07 15:30:09 +00:00
parameters {I : Type} [is_set I] (Y : I → AbGroup)
variables {A' : AbGroup} {Y' : I → AbGroup}
2017-06-07 15:30:09 +00:00
definition dirsum_carrier : AbGroup := free_ab_group (Σi, Y i)
local abbreviation ι [constructor] := @free_ab_group_inclusion
inductive dirsum_rel : dirsum_carrier → Type :=
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹)
definition dirsum : AbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
-- definition dirsum_carrier_incl [constructor] (i : I) : Y i →g dirsum_carrier :=
definition dirsum_incl [constructor] (i : I) : Y i →g dirsum :=
homomorphism.mk (λy, class_of (ι ⟨i, y⟩))
begin intro g h, symmetry, apply gqg_eq_of_rel, apply tr, apply dirsum_rel.rmk end
parameter {Y}
definition dirsum.rec {P : dirsum → Type} [H : Πg, is_prop (P g)]
(h₁ : Πi (y : Y i), P (dirsum_incl i y)) (h₂ : P 1) (h₃ : Πg h, P g → P h → P (g * h)) :
Πg, P g :=
begin
refine @set_quotient.rec_prop _ _ _ H _,
refine @set_quotient.rec_prop _ _ _ (λx, !H) _,
esimp, intro l, induction l with s l ih,
exact h₂,
induction s with v v,
induction v with i y,
exact h₃ _ _ (h₁ i y) ih,
induction v with i y,
refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih,
refine transport P _ (h₁ i y⁻¹),
refine _ ⬝ !one_mul,
2017-04-07 19:56:37 +00:00
refine _ ⬝ ap (λx, mul x _) (to_respect_zero (dirsum_incl i)),
apply gqg_eq_of_rel',
apply tr, esimp,
refine transport dirsum_rel _ (dirsum_rel.rmk i y⁻¹ y),
rewrite [mul.left_inv, mul.assoc],
end
definition dirsum_homotopy {φ ψ : dirsum →g A'}
(h : Πi (y : Y i), φ (dirsum_incl i y) = ψ (dirsum_incl i y)) : φ ~ ψ :=
begin
refine dirsum.rec _ _ _,
exact h,
2017-04-07 19:56:37 +00:00
refine !to_respect_zero ⬝ !to_respect_zero⁻¹,
intro g₁ g₂ h₁ h₂, rewrite [* to_respect_mul, h₁, h₂]
end
definition dirsum_elim_resp_quotient (f : Πi, Y i →g A') (g : dirsum_carrier)
(r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 :=
begin
induction r with r, induction r,
rewrite [to_respect_mul, to_respect_inv, to_respect_mul, ▸*, ↑foldl, *one_mul,
to_respect_mul], apply mul.right_inv
end
definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' :=
gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) :
dirsum_elim f ∘g dirsum_incl i ~ f i :=
begin
intro g, apply one_mul
end
definition dirsum_elim_unique (f : Πi, Y i →g A') (k : dirsum →g A')
(H : Πi, k ∘g dirsum_incl i ~ f i) : k ~ dirsum_elim f :=
begin
apply gqg_elim_unique,
apply free_ab_group_elim_unique,
intro x, induction x with i y, exact H i y
end
end
variables {I J : Set} {Y Y' Y'' : I → AbGroup}
definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' :=
dirsum_elim (λi, dirsum_incl Y' i ∘g f i)
theorem dirsum_functor_compose (f' : Πi, Y' i →g Y'' i) (f : Πi, Y i →g Y' i) :
2017-04-07 19:56:37 +00:00
dirsum_functor f' ∘a dirsum_functor f ~ dirsum_functor (λi, f' i ∘a f i) :=
begin
apply dirsum_homotopy,
intro i y, reflexivity,
end
variable (Y)
definition dirsum_functor_gid : dirsum_functor (λi, gid (Y i)) ~ gid (dirsum Y) :=
begin
apply dirsum_homotopy,
intro i y, reflexivity,
end
variable {Y}
definition dirsum_functor_mul (f f' : Πi, Y i →g Y' i) :
homomorphism_mul (dirsum_functor f) (dirsum_functor f') ~
dirsum_functor (λi, homomorphism_mul (f i) (f' i)) :=
begin
apply dirsum_homotopy,
intro i y, esimp, exact sorry
end
definition dirsum_functor_homotopy {f f' : Πi, Y i →g Y' i} (p : f ~2 f') :
dirsum_functor f ~ dirsum_functor f' :=
begin
apply dirsum_homotopy,
intro i y, exact sorry
end
definition dirsum_functor_left [constructor] (f : J → I) : dirsum (Y ∘ f) →g dirsum Y :=
dirsum_elim (λj, dirsum_incl Y (f j))
end group