2016-03-21 03:16:36 +00:00
/-
Copyright (c) 2016 Michael Shulman. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
2017-07-01 13:46:38 +00:00
Authors: Michael Shulman, Floris van Doorn, Egbert Rijke, Stefano Piceghello, Yuri Sulyma
2016-03-21 03:16:36 +00:00
-/
2017-07-01 13:46:38 +00:00
import homotopy.LES_of_homotopy_groups .splice ..colim types.pointed2 .EM ..pointed_pi .smash_adjoint ..algebra.seq_colim .fwedge .pointed_cubes
2016-09-15 23:19:03 +00:00
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
2017-07-02 00:14:18 +00:00
seq_colim succ_str EM EM.ops function unit lift is_trunc
2016-03-21 22:53:25 +00:00
2016-03-21 03:16:36 +00:00
/---------------------
Basic definitions
---------------------/
2016-03-22 15:10:10 +00:00
/- The basic definitions of spectra and prespectra make sense for any successor-structure. -/
2016-03-21 03:16:36 +00:00
2016-03-22 15:10:10 +00:00
structure gen_prespectrum (N : succ_str) :=
(deloop : N → Type*)
(glue : Π(n:N), (deloop n) →* (Ω (deloop (S n))))
2016-03-21 03:16:36 +00:00
2016-03-22 15:10:10 +00:00
attribute gen_prespectrum.deloop [coercion]
structure is_spectrum [class] {N : succ_str} (E : gen_prespectrum N) :=
(is_equiv_glue : Πn, is_equiv (gen_prespectrum.glue E n))
2016-03-21 03:16:36 +00:00
2016-03-22 15:10:10 +00:00
attribute is_spectrum.is_equiv_glue [instance]
2016-03-21 03:16:36 +00:00
2016-03-22 15:10:10 +00:00
structure gen_spectrum (N : succ_str) :=
(to_prespectrum : gen_prespectrum N)
2016-03-21 03:16:36 +00:00
(to_is_spectrum : is_spectrum to_prespectrum)
2016-03-22 15:10:10 +00:00
attribute gen_spectrum.to_prespectrum [coercion]
attribute gen_spectrum.to_is_spectrum [instance]
2017-06-28 14:21:11 +00:00
attribute gen_spectrum._trans_of_to_prespectrum [unfold 2]
2016-03-22 15:10:10 +00:00
-- Classically, spectra and prespectra use the successor structure +ℕ .
-- But we will use +ℤ instead, to reduce case analysis later on.
2016-10-06 23:53:44 +00:00
abbreviation prespectrum := gen_prespectrum +ℤ
2017-06-06 04:43:11 +00:00
definition prespectrum.mk (Y : ℤ → Type*) (e : Π(n : ℤ ), Y n →* Ω (Y (n+1))) : prespectrum :=
gen_prespectrum.mk Y e
2016-03-22 15:10:10 +00:00
abbreviation spectrum := gen_spectrum +ℤ
2017-06-06 16:00:08 +00:00
abbreviation spectrum.mk (Y : prespectrum) (e : is_spectrum Y) : spectrum :=
2017-06-06 04:43:11 +00:00
gen_spectrum.mk Y e
2016-03-21 03:16:36 +00:00
2016-03-21 22:53:25 +00:00
namespace spectrum
2016-03-21 03:16:36 +00:00
2017-06-28 14:49:46 +00:00
definition glue [unfold 2] {{N : succ_str}} := @gen_prespectrum.glue N
2016-03-22 15:10:10 +00:00
--definition glue := (@gen_prespectrum.glue +ℤ )
2016-04-07 21:28:19 +00:00
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
2016-03-22 15:10:10 +00:00
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
2017-05-24 12:25:58 +00:00
definition equiv_glue2 (Y : spectrum) (n : ℤ ) : Ω (Ω (Y (n+2))) ≃* Y n :=
begin
refine (!equiv_glue ⬝e* loop_pequiv_loop (!equiv_glue ⬝e* loop_pequiv_loop _))⁻¹ᵉ*,
refine pequiv_of_eq (ap Y _),
exact add.assoc n 1 1
end
2017-07-05 19:40:15 +00:00
definition gluen {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ )
: X n →* Ω[k] (X (n +' k)) :=
by induction k with k f; reflexivity; exact !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X (n +' k)) ∘* f
-- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem?
definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ )
: X n ≃* Ω[k] (X (n +' k)) :=
by induction k with k f; reflexivity; exact f ⬝e* (loopn_pequiv_loopn k (equiv_glue X (n +' k))
⬝e* !loopn_succ_in⁻¹ᵉ*)
definition equiv_gluen_inv_succ {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ ) :
(equiv_gluen X n (k+1))⁻¹ᵉ* ~*
(equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in :=
begin
refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine pwhisker_left _ !pinv_pinv
end
definition succ_str_add_eq_int_add (n : ℤ ) (m : ℕ ) : @succ_str.add sint n m = n + m :=
begin
induction m with m IH,
{ symmetry, exact add_zero n },
{ exact ap int.succ IH ⬝ add.assoc n m 1 }
end
2016-10-10 15:10:24 +00:00
-- a square when we compose glue with transporting over a path in N
definition glue_ptransport {N : succ_str} (X : gen_prespectrum N) {n n' : N} (p : n = n') :
glue X n' ∘* ptransport X p ~* Ω→ (ptransport X (ap S p)) ∘* glue X n :=
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*
2016-03-22 15:10:10 +00:00
-- Sometimes an ℕ -indexed version does arise naturally, however, so
-- we give a standard way to extend an ℕ -indexed (pre)spectrum to a
-- ℤ -indexed one.
definition psp_of_nat_indexed [constructor] (E : gen_prespectrum +ℕ ) : gen_prespectrum +ℤ :=
gen_prespectrum.mk
(λ(n:ℤ ), match n with
| of_nat k := E k
| neg_succ_of_nat k := Ω[succ k] (E 0)
end)
begin
intros n, cases n with n n: esimp,
{ exact (gen_prespectrum.glue E n) },
cases n with n,
{ exact (pid _) },
{ exact (pid _) }
end
definition is_spectrum_of_nat_indexed [instance] (E : gen_prespectrum +ℕ ) [H : is_spectrum E] : is_spectrum (psp_of_nat_indexed E) :=
begin
apply is_spectrum.mk, intros n, cases n with n n: esimp,
{ apply is_spectrum.is_equiv_glue },
cases n with n: apply is_equiv_id
end
protected definition of_nat_indexed (E : gen_prespectrum +ℕ ) [H : is_spectrum E] : spectrum
:= spectrum.mk (psp_of_nat_indexed E) (is_spectrum_of_nat_indexed E)
-- In fact, a (pre)spectrum indexed on any pointed successor structure
-- gives rise to one indexed on +ℕ , so in this sense +ℤ is a
-- "universal" successor structure for indexing spectra.
definition succ_str.of_nat {N : succ_str} (z : N) : ℕ → N
| succ_str.of_nat zero := z
| succ_str.of_nat (succ k) := S (succ_str.of_nat k)
2016-03-21 03:16:36 +00:00
2017-06-09 16:25:09 +00:00
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : prespectrum :=
2016-03-22 15:10:10 +00:00
psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n)))
2016-03-21 03:16:36 +00:00
2016-03-22 15:10:10 +00:00
definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E]
: is_spectrum (psp_of_gen_indexed z E) :=
begin
apply is_spectrum_of_nat_indexed, apply is_spectrum.mk, intros n, esimp, apply is_spectrum.is_equiv_glue
end
protected definition of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_spectrum N) : spectrum :=
2017-06-06 16:00:08 +00:00
gen_spectrum.mk (psp_of_gen_indexed z E) (is_spectrum_of_gen_indexed z E)
2016-03-22 15:10:10 +00:00
-- Generally it's easiest to define a spectrum by giving 'equiv's
-- directly. This works for any indexing succ_str.
2016-10-06 23:53:44 +00:00
protected definition MK [constructor] {N : succ_str} (deloop : N → Type*)
(glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N :=
2016-03-22 15:10:10 +00:00
gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n))
(begin
apply is_spectrum.mk, intros n, esimp,
apply pequiv.to_is_equiv -- Why doesn't typeclass inference find this?
end)
-- Finally, we combine them and give a way to produce a (ℤ -)spectrum from a ℕ -indexed family of 'equiv's.
2016-10-06 23:53:44 +00:00
protected definition Mk [constructor] (deloop : ℕ → Type*)
(glue : Π(n:ℕ ), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum :=
2016-03-22 15:10:10 +00:00
spectrum.of_nat_indexed (spectrum.MK deloop glue)
2016-03-22 16:53:16 +00:00
------------------------------
-- Maps and homotopies of (pre)spectra
------------------------------
-- These make sense for any succ_str.
2016-10-13 00:07:18 +00:00
2016-03-22 15:10:10 +00:00
structure smap {N : succ_str} (E F : gen_prespectrum N) :=
(to_fun : Π(n:N), E n →* F n)
2017-06-09 02:01:41 +00:00
(glue_square : Π(n:N), psquare
(to_fun n)
(Ω→ (to_fun (S n)))
(glue E n)
(glue F n)
)
2016-03-21 03:16:36 +00:00
2017-07-07 19:11:55 +00:00
definition smap_sigma {N : succ_str} (X Y : gen_prespectrum N) : Type :=
Σ (to_fun : Π(n:N), X n →* Y n),
Π(n:N), psquare
(to_fun n)
(Ω→ (to_fun (S n)))
(glue X n)
(glue Y n)
2016-03-21 22:53:25 +00:00
open smap
infix ` →ₛ `:30 := smap
2016-03-21 03:16:36 +00:00
2016-03-21 22:53:25 +00:00
attribute smap.to_fun [coercion]
2016-03-21 03:16:36 +00:00
2017-07-07 19:11:55 +00:00
definition smap_to_sigma [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : smap_sigma X Y :=
begin
induction f with f fsq,
exact sigma.mk f fsq,
end
definition smap_to_struc [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) : X →ₛ Y :=
begin
induction f with f fsq,
exact smap.mk f fsq,
end
definition smap_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) :
smap_to_sigma (smap_to_struc f) = f :=
begin
induction f, reflexivity
end
definition smap_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) :
smap_to_struc (smap_to_sigma f) = f :=
begin
induction f, reflexivity
end
definition smap_sigma_equiv [constructor] {N : succ_str} (X Y : gen_prespectrum N) : (smap_sigma X Y) ≃ (X →ₛ Y) :=
begin
fapply equiv.mk,
exact smap_to_struc,
fapply adjointify,
exact smap_to_sigma,
exact smap_to_sigma_issec,
exact smap_to_sigma_isretr
end
2016-03-22 15:10:10 +00:00
-- A version of 'glue_square' in the spectrum case that uses 'equiv_glue'
definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N)
2017-07-01 13:46:38 +00:00
: psquare (f n) (Ω→ (f (S n))) (equiv_glue E n) (equiv_glue F n) :=
glue_square f n
2016-03-23 18:30:39 +00:00
2017-06-28 12:14:48 +00:00
definition sid [constructor] [refl] {N : succ_str} (E : gen_prespectrum N) : E →ₛ E :=
2017-07-01 13:46:38 +00:00
smap.mk (λ n, pid (E n)) (λ n, psquare_of_phtpy_bot (ap1_pid) (psquare_of_pid_top_bot (phomotopy.rfl)))
2017-07-01 19:00:40 +00:00
--print sid
2017-07-01 13:46:38 +00:00
-- smap.mk (λn, pid (E n))
-- (λn, calc glue E n ∘* pid (E n) ~* glue E n : pcompose_pid
-- ... ~* pid (Ω(E (S n))) ∘* glue E n : pid_pcompose
-- ... ~* Ω→(pid (E (S n))) ∘* glue E n : pwhisker_right (glue E n) ap1_pid⁻¹*)
2016-03-22 16:53:16 +00:00
2017-06-28 12:14:48 +00:00
definition scompose [trans] {N : succ_str} {X Y Z : gen_prespectrum N}
(g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
2017-07-01 19:00:40 +00:00
smap.mk (λn, g n ∘* f n)
(λ n, psquare_of_phtpy_bot
(ap1_pcompose (g (S n)) (f (S n)))
2017-07-01 14:15:29 +00:00
(psquare_hcompose (glue_square f n) (glue_square g n)))
/-
2016-03-21 22:53:25 +00:00
(λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n
~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc
2016-03-22 15:10:10 +00:00
... ~* (Ω→(to_fun g (S n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
... ~* Ω→(to_fun g (S n)) ∘* (glue Y n ∘* to_fun f n) : passoc
2016-12-26 15:24:01 +00:00
... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left (Ω→(to_fun g (S n))) (glue_square f n)
2016-03-22 15:10:10 +00:00
... ~* (Ω→(to_fun g (S n)) ∘* Ω→(f (S n))) ∘* glue X n : passoc
2016-09-22 20:03:08 +00:00
... ~* Ω→(to_fun g (S n) ∘* to_fun f (S n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_pcompose _ _))
2017-07-01 14:15:29 +00:00
-/
2016-03-21 03:16:36 +00:00
2016-03-21 22:53:25 +00:00
infixr ` ∘ₛ `:60 := scompose
2016-03-21 03:16:36 +00:00
2016-10-10 15:10:24 +00:00
definition szero [constructor] {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F :=
2016-03-22 16:53:16 +00:00
smap.mk (λn, pconst (E n) (F n))
2017-07-01 14:42:49 +00:00
(λn, psquare_of_phtpy_bot (ap1_pconst (E (S n)) (F (S n)))
(psquare_of_pconst_top_bot (glue E n) (glue F n)))
/-
2016-03-22 16:53:16 +00:00
(λn, calc glue F n ∘* pconst (E n) (F n) ~* pconst (E n) (Ω(F (S n))) : pcompose_pconst
... ~* pconst (Ω(E (S n))) (Ω(F (S n))) ∘* glue E n : pconst_pcompose
... ~* Ω→(pconst (E (S n)) (F (S n))) ∘* glue E n : pwhisker_right (glue E n) (ap1_pconst _ _))
2017-07-01 14:42:49 +00:00
-/
2016-03-22 16:53:16 +00:00
2016-10-10 15:10:24 +00:00
definition stransport [constructor] {N : succ_str} {A : Type} {a a' : A} (p : a = a')
(E : A → gen_prespectrum N) : E a →ₛ E a' :=
smap.mk (λn, ptransport (λa, E a n) p)
begin
intro n, induction p,
exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*,
end
2016-03-22 16:53:16 +00:00
structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) :=
(to_phomotopy : Πn, f n ~* g n)
2017-07-01 19:00:40 +00:00
(glue_homotopy : Πn, ptube_v
(to_phomotopy n)
(ap1_phomotopy (to_phomotopy (S n)))
(glue_square f n)
2017-07-01 15:23:50 +00:00
(glue_square g n))
/- (glue_homotopy : Πn, phsquare
2017-06-09 02:01:41 +00:00
(pwhisker_left (glue F n) (to_phomotopy n))
(pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n))))
(glue_square f n)
2017-06-15 02:55:10 +00:00
(glue_square g n))
2017-07-01 15:23:50 +00:00
-/
2016-03-22 16:53:16 +00:00
infix ` ~ₛ `:50 := shomotopy
2017-06-09 02:07:46 +00:00
definition shomotopy_compose {N : succ_str} {E F : gen_prespectrum N} {f g h : E →ₛ F} (p : g ~ₛ h) (q : f ~ₛ g) : f ~ₛ h :=
shomotopy.mk
(λn, (shomotopy.to_phomotopy q n) ⬝* (shomotopy.to_phomotopy p n))
begin
2017-07-01 19:00:40 +00:00
intro n, unfold [ptube_v],
2017-06-09 02:07:46 +00:00
rewrite (pwhisker_left_trans _),
rewrite ap1_phomotopy_trans,
rewrite (pwhisker_right_trans _),
exact phhconcat ((shomotopy.glue_homotopy q) n) ((shomotopy.glue_homotopy p) n)
end
definition shomotopy_inverse {N : succ_str} {E F : gen_prespectrum N} {f g : E →ₛ F} (p : f ~ₛ g) : g ~ₛ f :=
shomotopy.mk (λn, (shomotopy.to_phomotopy p n)⁻¹*) begin
2017-07-01 19:00:40 +00:00
intro n, unfold [ptube_v],
2017-06-09 02:07:46 +00:00
rewrite (pwhisker_left_symm _ _),
rewrite [-ap1_phomotopy_symm],
rewrite (pwhisker_right_symm _ _),
exact phhinverse ((shomotopy.glue_homotopy p) n)
end
2017-06-09 18:24:33 +00:00
-- incoherent homotopies. this is a bit gross, but
-- a) we don't need the higher coherences for most basic things
-- (you need it for higher algebra, e.g. power operations)
-- b) homotopies of maps between spectra are really hard
structure shomotopy_incoh {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) :=
(to_phomotopy : Πn, f n ~* g n)
infix ` ~ₛi `:50 := shomotopy_incoh
definition shomotopy_to_incoh [coercion] {N : succ_str} {E F : gen_prespectrum N} {f g : E →ₛ F} (p : f ~ₛ g) : shomotopy_incoh f g :=
shomotopy_incoh.mk (λn, (shomotopy.to_phomotopy p) n)
2017-06-28 16:53:09 +00:00
------------------------------
-- Equivalences of prespectra
------------------------------
2017-07-04 11:57:46 +00:00
definition spectrum_pequiv_of_pequiv_succ {E F : spectrum} (n : ℤ ) (e : E (n + 1) ≃* F (n + 1)) :
E n ≃* F n :=
equiv_glue E n ⬝e* loop_pequiv_loop e ⬝e* (equiv_glue F n)⁻¹ᵉ*
2017-07-02 00:14:18 +00:00
definition spectrum_pequiv_of_nat {E F : spectrum} (e : Π(n : ℕ ), E n ≃* F n) (n : ℤ ) :
E n ≃* F n :=
begin
2017-07-04 11:57:46 +00:00
induction n with n n,
exact e n,
induction n with n IH,
{ exact spectrum_pequiv_of_pequiv_succ -[1+0] (e 0) },
{ exact spectrum_pequiv_of_pequiv_succ -[1+succ n] IH }
end
2017-07-05 19:40:15 +00:00
definition spectrum_pequiv_of_nat_add {E F : spectrum} (m : ℕ )
(e : Π(n : ℕ ), E (n + m) ≃* F (n + m)) : Π(n : ℤ ), E n ≃* F n :=
begin
apply spectrum_pequiv_of_nat,
refine nat.rec_down _ m e _,
intro n f k, cases k with k,
exact spectrum_pequiv_of_pequiv_succ _ (f 0),
exact pequiv_ap E (ap of_nat (succ_add k n)) ⬝e* f k ⬝e*
pequiv_ap F (ap of_nat (succ_add k n))⁻¹
end
2017-07-04 11:57:46 +00:00
definition is_contr_spectrum_of_nat {E : spectrum} (e : Π(n : ℕ ), is_contr (E n)) (n : ℤ ) :
is_contr (E n) :=
begin
have Πn, is_contr (E (n + 1)) → is_contr (E n),
from λn H, @(is_trunc_equiv_closed_rev -2 !equiv_glue) (is_contr_loop_of_is_contr H),
2017-07-02 00:14:18 +00:00
induction n with n n,
exact e n,
induction n with n IH,
{ exact this -[1+0] (e 0) },
{ exact this -[1+succ n] IH }
end
2017-06-28 16:53:09 +00:00
structure is_sequiv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type :=
(to_linv : F →ₛ E)
2017-07-01 19:00:40 +00:00
(is_retr : to_linv ∘ₛf ~ₛ sid E)
2017-06-28 16:53:09 +00:00
(to_rinv : F →ₛ E)
(is_sec : f ∘ₛ to_rinv ~ₛ sid F)
structure sequiv {N : succ_str} (E F : gen_prespectrum N) : Type :=
(to_fun : E →ₛ F)
(to_is_sequiv : is_sequiv to_fun)
infix ` ≃ₛ ` : 25 := sequiv
2017-07-01 12:06:47 +00:00
definition is_sequiv_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type := Π (n: N), is_equiv (f n)
definition is_sequiv_of_smap_pequiv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) (n : N) : E n ≃* F n :=
begin
2017-07-01 19:00:40 +00:00
fapply pequiv_of_pmap,
2017-07-01 12:06:47 +00:00
exact f n,
fapply H,
end
definition is_sequiv_of_smap_inv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : F →ₛ E :=
begin
fapply smap.mk,
intro n,
exact (is_sequiv_of_smap_pequiv f H n)⁻¹ᵉ*,
intro n,
refine _ ⬝vp* (to_pinv_loopn_pequiv_loopn 1 (is_sequiv_of_smap_pequiv f H (S n)))⁻¹*,
fapply phinverse,
exact glue_square f n,
end
2017-07-01 19:00:40 +00:00
local postfix `⁻¹ˢ` : (max + 1) := is_sequiv_of_smap_inv
2017-07-01 12:06:47 +00:00
definition is_sequiv_of_smap_isretr {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : is_sequiv_of_smap_inv f H ∘ₛ f ~ₛ sid E :=
begin
fapply shomotopy.mk,
intro n,
fapply pleft_inv,
intro n,
refine _ ⬝hp** _,
repeat exact sorry,
end
2017-07-05 16:26:31 +00:00
definition is_sequiv_of_smap_issec {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : f ∘ₛ is_sequiv_of_smap_inv f H ~ₛ sid F :=
begin
repeat exact sorry
end
2017-07-01 12:06:47 +00:00
definition is_sequiv_of_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : is_sequiv_smap f → is_sequiv f :=
2017-06-28 16:53:09 +00:00
begin
2017-07-01 12:06:47 +00:00
intro H,
fapply is_sequiv.mk,
fapply is_sequiv_of_smap_inv f H,
fapply is_sequiv_of_smap_isretr f H,
2017-07-05 16:26:31 +00:00
fapply is_sequiv_of_smap_inv f H,
fapply is_sequiv_of_smap_issec f H,
2017-06-28 16:53:09 +00:00
end
2016-03-22 16:53:16 +00:00
------------------------------
-- Suspension prespectra
------------------------------
2016-03-21 03:16:36 +00:00
2016-03-22 15:10:10 +00:00
-- This should probably go in 'susp'
definition psuspn : ℕ → Type* → Type*
| psuspn 0 X := X
| psuspn (succ n) X := psusp (psuspn n X)
2016-03-21 03:16:36 +00:00
2016-03-22 15:10:10 +00:00
-- Suspension prespectra are one that's naturally indexed on the natural numbers
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
2016-11-24 04:54:57 +00:00
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X))
2016-03-21 03:16:36 +00:00
2017-06-28 14:49:46 +00:00
-- The sphere prespectrum
definition psp_sphere : gen_prespectrum +ℕ :=
psp_susp bool.pbool
2016-03-21 22:53:25 +00:00
/---------------------
Homotopy groups
---------------------/
2016-03-21 03:16:36 +00:00
2016-03-22 15:10:10 +00:00
-- Here we start to reap the rewards of using ℤ -indexing: we can
-- read off the homotopy groups without any tedious case-analysis of
-- n. We increment by 2 in order to ensure that they are all
-- automatically abelian groups.
2017-05-11 21:17:50 +00:00
definition shomotopy_group (n : ℤ ) (E : spectrum) : AbGroup := πag[2] (E (2 - n))
2016-09-09 20:45:44 +00:00
notation `πₛ[`:95 n:0 `]`:0 := shomotopy_group n
2016-03-21 22:53:25 +00:00
2017-05-11 21:17:50 +00:00
definition shomotopy_group_fun (n : ℤ ) {E F : spectrum} (f : E →ₛ F) :
2016-09-09 20:45:44 +00:00
πₛ[n] E →g πₛ[n] F :=
2017-03-02 01:38:13 +00:00
π→g[2] (f (2 - n))
2016-09-09 20:45:44 +00:00
2017-07-02 00:14:18 +00:00
definition shomotopy_group_isomorphism_of_pequiv (n : ℤ ) {E F : spectrum} (f : Πn, E n ≃* F n) :
πₛ[n] E ≃g πₛ[n] F :=
homotopy_group_isomorphism_of_pequiv 1 (f (2 - n))
definition shomotopy_group_isomorphism_of_pequiv_nat (n : ℕ ) {E F : spectrum}
(f : Πn, E n ≃* F n) : πₛ[n] E ≃g πₛ[n] F :=
shomotopy_group_isomorphism_of_pequiv n (spectrum_pequiv_of_nat f)
2016-09-09 20:45:44 +00:00
notation `πₛ→[`:95 n:0 `]`:0 := shomotopy_group_fun n
2016-03-21 22:53:25 +00:00
2017-06-09 18:24:33 +00:00
-- what an awful name
definition shomotopy_group_fun_shomotopy_incoh {E F : spectrum} {f g : E →ₛ F} (n : ℤ ) (p : f ~ₛi g) : πₛ→[n] f ~ πₛ→[n] g :=
begin
refine homotopy_group_functor_phomotopy 2 _,
exact (shomotopy_incoh.to_phomotopy p) (2 - n)
end
2017-07-07 19:11:55 +00:00
/- Comparing the structure of shomotopy with a Σ-type -/
definition shomotopy_sigma {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) : Type :=
Σ (phtpy : Π (n : N), f n ~* g n),
Πn, ptube_v
(phtpy n)
(ap1_phomotopy (phtpy (S n)))
(glue_square f n)
(glue_square g n)
definition shomotopy_to_sigma [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : shomotopy_sigma f g :=
begin
induction H with H Hsq,
exact sigma.mk H Hsq,
end
definition shomotopy_to_struct [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) : f ~ₛ g :=
begin
induction H with H Hsq,
exact shomotopy.mk H Hsq,
end
definition shomotopy_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) :
shomotopy_to_sigma (shomotopy_to_struct H) = H
:=
begin
induction H with H Hsq, reflexivity
end
definition shomotopy_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) :
shomotopy_to_struct (shomotopy_to_sigma H) = H
:=
begin
induction H, reflexivity
end
definition shomotopy_sigma_equiv [constructor] {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) :
shomotopy_sigma f g ≃ (f ~ₛ g) :=
begin
fapply equiv.mk,
exact shomotopy_to_struct,
fapply adjointify,
exact shomotopy_to_sigma,
exact shomotopy_to_sigma_issec,
exact shomotopy_to_sigma_isretr,
end
/- equivalence of shomotopy and eq -/
/-
definition eq_of_shomotopy_pfun {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) (n : N) : f n = g n :=
begin
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y),
repeat exact sorry
end-/
definition fam_phomotopy_of_eq
{N : Type} {X Y: N → Type*} (f g : Π n, X n →* Y n) : (f = g) ≃ (Π n, f n ~* g n) :=
(eq.eq_equiv_homotopy) ⬝e pi_equiv_pi_right (λ n, pmap_eq_equiv (f n) (g n))
/-
definition ppi_homotopy_rec_on_eq [recursor]
{k' : ppi_gen B x₀}
{Q : (k ~~* k') → Type}
(p : k ~~* k')
(H : Π(q : k = k'), Q (ppi_homotopy_of_eq q))
: Q p :=
ppi_homotopy_of_eq_of_ppi_homotopy p ▸ H (eq_of_ppi_homotopy p)
-/
definition fam_phomotopy_rec_on_eq {N : Type} {X Y : N → Type*} (f g : Π n, X n →* Y n)
{Q : (Π n, f n ~* g n) → Type}
(p : Π n, f n ~* g n)
(H : Π (q : f = g), Q (fam_phomotopy_of_eq f g q)) : Q p :=
begin
refine _ ▸ H ((fam_phomotopy_of_eq f g)⁻¹ᵉ p),
have q : to_fun (fam_phomotopy_of_eq f g) (to_fun (fam_phomotopy_of_eq f g)⁻¹ᵉ p) = p,
from right_inv (fam_phomotopy_of_eq f g) p,
krewrite q
end
/-
definition ppi_homotopy_rec_on_idp [recursor]
{Q : Π {k' : ppi_gen B x₀}, (k ~~* k') → Type}
(q : Q (ppi_homotopy.refl k)) {k' : ppi_gen B x₀} (H : k ~~* k') : Q H :=
begin
induction H using ppi_homotopy_rec_on_eq with t,
induction t, exact eq_ppi_homotopy_refl_ppi_homotopy_of_eq_refl k ▸ q,
end
-/
set_option pp.coercions true
definition fam_phomotopy_rec_on_idp {N : Type} {X Y : N → Type*} (f : Π n, X n →* Y n)
(Q : Π (g : Π n, X n →* Y n) (H : Π n, f n ~* g n), Type)
(q : Q f (λ n, phomotopy.rfl))
(g : Π n, X n →* Y n) (H : Π n, f n ~* g n) : Q g H :=
begin
fapply fam_phomotopy_rec_on_eq,
refine λ(p : f = g), _, --ugly trick
intro p, induction p,
exact q,
end
definition eq_of_shomotopy {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : f = g :=
begin
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y)⁻¹ᵉ,
induction f with f fsq,
induction g with g gsq,
induction H with H Hsq,
fapply sigma_eq,
fapply eq_of_homotopy,
intro n, fapply eq_of_phomotopy, exact H n,
fapply pi_pathover_constant,
intro n,
esimp at *,
revert g H gsq Hsq n,
refine fam_phomotopy_rec_on_idp f _ _,
intro gsq Hsq n,
refine change_path _ _,
-- have p : eq_of_homotopy (λ n, eq_of_phomotopy phomotopy.rfl) = refl f,
reflexivity,
refine (eq_of_homotopy_eta rfl)⁻¹ ⬝ _,
fapply ap (eq_of_homotopy), fapply eq_of_homotopy, intro n, refine (eq_of_phomotopy_refl _)⁻¹,
-- fapply eq_of_ppi_homotopy,
fapply pathover_idp_of_eq,
note Hsq' := ptube_v_eq_bot phomotopy.rfl (ap1_phomotopy_refl _) (fsq n) (gsq n) (Hsq n),
unfold ptube_v at *,
unfold phsquare at *,
refine _ ⬝ Hsq'⁻¹ ⬝ _,
refine (trans_refl (fsq n))⁻¹ ⬝ _,
exact idp ◾** (pwhisker_right_refl _ _)⁻¹,
refine _ ⬝ (refl_trans (gsq n)),
refine _ ◾** idp,
exact pwhisker_left_refl _ _,
end
2017-06-09 00:09:48 +00:00
/- homotopy group of a prespectrum -/
2017-06-09 16:25:09 +00:00
definition pshomotopy_group_hom (n : ℤ ) (E : prespectrum) (k : ℕ )
: πag[k + 2] (E (-n - 2 + k)) →g πag[k + 3] (E (-n - 2 + (k + 1))) :=
2017-06-09 00:09:48 +00:00
begin
2017-06-09 16:25:09 +00:00
refine _ ∘g π→g[k+2] (glue E _),
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
refine homotopy_group_isomorphism_of_pequiv (k+1)
2017-06-09 21:42:05 +00:00
(loop_pequiv_loop (pequiv_of_eq (ap E (add.assoc (-n - 2) k 1))))
2017-06-09 00:09:48 +00:00
end
2017-06-09 16:25:09 +00:00
definition pshomotopy_group (n : ℤ ) (E : prespectrum) : AbGroup :=
group.seq_colim (λ(k : ℕ ), πag[k+2] (E (-n - 2 + k))) (pshomotopy_group_hom n E)
2017-06-09 00:09:48 +00:00
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
definition pshomotopy_group_fun (n : ℤ ) {E F : prespectrum} (f : E →ₛ F) :
πₚₛ[n] E →g πₚₛ[n] F :=
2017-06-09 16:25:09 +00:00
group.seq_colim_functor (λk, π→g[k+2] (f (-n - 2 +[ℤ ] k)))
begin
2017-06-09 21:42:05 +00:00
intro k,
note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n - 2 +[ℤ ] k))),
note sq2 := homotopy_group_functor_hsquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n - 2) k 1))),
note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n - 2 +[ℤ ] (k+1))))⁻¹ʰᵗʸʰ,
note sq4 := hsquare_of_psquare sq2,
note rect := sq1 ⬝htyh sq4 ⬝htyh sq3,
exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3,
2017-06-09 16:25:09 +00:00
end
2017-06-09 00:09:48 +00:00
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
2016-03-21 22:53:25 +00:00
/-------------------------------
Cotensor of spectra by types
-------------------------------/
2016-03-22 15:10:10 +00:00
-- Makes sense for any indexing succ_str. Could be done for
-- prespectra too, but as with truncation, why bother?
2017-05-24 12:25:58 +00:00
2017-07-07 21:32:57 +00:00
definition sp_cotensor [constructor] {N : succ_str} (A : Type*) (B : gen_spectrum N) :
gen_spectrum N :=
2016-03-21 22:53:25 +00:00
spectrum.MK (λn, ppmap A (B n))
2017-06-02 16:15:31 +00:00
(λn, (loop_ppmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (pequiv_ppcompose_left (equiv_glue B n)))
2016-03-21 22:53:25 +00:00
2017-07-07 21:32:57 +00:00
/- unpointed cotensor -/
definition sp_ucotensor [constructor] {N : succ_str} (A : Type) (B : gen_spectrum N) :
gen_spectrum N :=
spectrum.MK (λn, A →ᵘ* B n)
(λn, pumap_pequiv_right A (equiv_glue B n) ⬝e* (loop_pumap A (B (S n)))⁻¹ᵉ*)
2016-03-25 16:33:36 +00:00
----------------------------------------
-- Sections of parametrized spectra
----------------------------------------
2017-07-07 21:32:57 +00:00
definition spi [constructor] {N : succ_str} (A : Type*) (E : A → gen_spectrum N) :
gen_spectrum N :=
spectrum.MK (λn, Π*a, E a n)
(λn, !ppi_loop_pequiv⁻¹ᵉ* ∘*ᵉ ppi_pequiv_right (λa, equiv_glue (E a) n))
2017-07-08 01:01:28 +00:00
2017-07-08 10:41:57 +00:00
definition ppi_assoc_compose_left {A : Type*} {B C D : A → Type*}
(f : Π (a : A), B a →* C a) (g : Π (a : A), C a →* D a)
: (ppi_compose_left g ∘* ppi_compose_left f) ~* ppi_compose_left (λ a, g a ∘* f a) :=
begin
fapply phomotopy.mk,
intro h, fapply eq_of_ppi_homotopy,
fapply ppi_homotopy.mk,
2017-07-08 10:43:41 +00:00
-- intro a, reflexivity,
-- esimp,
2017-07-08 10:41:57 +00:00
repeat exact sorry,
2017-07-08 10:53:31 +00:00
end /- TODO FOR SSS -/
2017-07-08 10:41:57 +00:00
definition psquare_of_ppi_compose_left {A : Type*} {B C D E : A → Type*}
{ftop : Π (a : A), B a →* C a} {fbot : Π (a : A), D a →* E a}
{fleft : Π (a : A), B a →* D a} {fright : Π (a : A), C a →* E a}
(psq : Π (a :A), psquare (ftop a) (fbot a) (fleft a) (fright a))
: psquare
(ppi_compose_left ftop)
(ppi_compose_left fbot)
(ppi_compose_left fleft)
(ppi_compose_left fright)
:=
begin
refine (ppi_assoc_compose_left ftop fright) ⬝* _ ⬝* (ppi_assoc_compose_left fleft fbot)⁻¹*,
refine eq_of_homotopy (λ a, eq_of_phomotopy (psq a)) ▸ phomotopy.rfl,
-- the last step is probably an unnecessary application of function extensionality.
end
2017-07-08 10:53:31 +00:00
definition spi_compose_left_topsq
{N : succ_str} {A : Type*} {E F : A → gen_spectrum N} (f : Π a, (E a) →ₛ (F a)) (n : N)
: psquare
(ppi_compose_left (λ a, f a n))
(ppi_compose_left (λ a, Ω→ (f a (S n))))
(ppi_pequiv_right (λ a, equiv_glue (E a) n))
(ppi_pequiv_right (λ a, equiv_glue (F a) n))
:=
begin
fapply psquare_of_ppi_compose_left,
intro a, exact glue_square (f a) n,
end
2017-07-08 01:01:28 +00:00
definition spi_compose_left_botsq
{N : succ_str} {A : Type*} {E F : A → gen_spectrum N} (f : Π a, (E a) →ₛ (F a)) (n : N)
: psquare
(ppi_compose_left (λ a, Ω→ (to_fun (f a) (S n))))
(Ω→ (ppi_compose_left (λ a, to_fun (f a) (S n))))
(pequiv.to_pmap ppi_loop_pequiv⁻¹ᵉ*)
(pequiv.to_pmap ppi_loop_pequiv⁻¹ᵉ*)
:=
begin
exact sorry
end /- TODO FOR SSS -/
2017-07-08 00:40:27 +00:00
2017-07-07 21:32:57 +00:00
definition spi_compose_left [constructor] {N : succ_str} {A : Type*} {E F : A -> gen_spectrum N}
(f : Πa, E a →ₛ F a) : spi A E →ₛ spi A F :=
2017-07-08 00:40:27 +00:00
smap.mk (λn, ppi_compose_left (λa, f a n))
begin
intro n,
fapply psquare_of_phomotopy,
refine
(passoc _ _ (ppi_compose_left (λ a, to_fun (f a) n)))
⬝* _ ⬝*
(passoc (!ppi_loop_pequiv⁻¹ᵉ*)
(ppi_compose_left (λ a, Ω→ (f a (S n))))
(ppi_pequiv_right (λa, equiv_glue (E a) n)))⁻¹*
⬝* _ ⬝*
(passoc (Ω→ (ppi_compose_left (λ a, to_fun (f a) (S n)))) _ _),
{ refine (pwhisker_left (ppi_loop_pequiv⁻¹ᵉ*) _),
2017-07-08 01:01:28 +00:00
fapply spi_compose_left_topsq},
2017-07-08 00:40:27 +00:00
{ refine (pwhisker_right (ppi_pequiv_right (λ a, equiv_glue (E a) n)) _),
2017-07-08 01:01:28 +00:00
fapply spi_compose_left_botsq},
end
2017-07-08 00:40:27 +00:00
2017-07-07 21:32:57 +00:00
-- unpointed spi
definition supi [constructor] {N : succ_str} (A : Type) (E : A → gen_spectrum N) :
gen_spectrum N :=
spectrum.MK (λn, Πᵘ*a, E a n)
(λn, pupi_pequiv_right (λa, equiv_glue (E a) n) ⬝e* (loop_pupi (λa, E a (S n)))⁻¹ᵉ*)
2016-03-25 16:33:36 +00:00
2016-03-23 18:30:39 +00:00
/-----------------------------------------
Fibers and long exact sequences
-----------------------------------------/
2017-07-02 00:14:18 +00:00
definition sfiber [constructor] {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) :
gen_spectrum N :=
2016-03-23 18:30:39 +00:00
spectrum.MK (λn, pfiber (f n))
2017-06-02 16:15:31 +00:00
(λn, (loop_pfiber (f (S n)))⁻¹ᵉ* ∘*ᵉ pfiber_pequiv_of_square _ _ (sglue_square f n))
2016-03-21 22:53:25 +00:00
2016-10-13 00:07:18 +00:00
/- the map from the fiber to the domain -/
2016-09-14 22:46:53 +00:00
definition spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : sfiber f →ₛ X :=
smap.mk (λn, ppoint (f n))
begin
2016-10-13 00:07:18 +00:00
intro n,
refine _ ⬝* !passoc,
2017-05-21 04:39:30 +00:00
refine _ ⬝* pwhisker_right _ !ppoint_loop_pfiber_inv⁻¹*,
2017-06-02 16:15:31 +00:00
rexact (pfiber_pequiv_of_square_ppoint (equiv_glue X n) (equiv_glue Y n) (sglue_square f n))⁻¹*
2016-09-14 22:46:53 +00:00
end
2017-03-02 01:38:13 +00:00
definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y)
2017-06-15 02:55:10 +00:00
: f ∘ₛ spoint f ~ₛ !szero :=
2016-09-14 22:46:53 +00:00
begin
2017-03-02 01:38:13 +00:00
fapply shomotopy.mk,
{ intro n, exact pcompose_ppoint (f n) },
{ intro n, exact sorry }
2016-09-15 23:19:03 +00:00
end
2017-03-02 01:38:13 +00:00
definition equiv_glue_neg (X : spectrum) (n : ℤ ) : X (2 - succ n) ≃* Ω (X (2 - n)) :=
have H : succ (2 - succ n) = 2 - n, from ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
equiv_glue X (2 - succ n) ⬝e* loop_pequiv_loop (pequiv_of_eq (ap X H))
definition π_glue (X : spectrum) (n : ℤ ) : π[2] (X (2 - succ n)) ≃* π[3] (X (2 - n)) :=
homotopy_group_pequiv 2 (equiv_glue_neg X n)
definition πg_glue (X : spectrum) (n : ℤ ) : πg[2] (X (2 - succ n)) ≃g πg[3] (X (2 - n)) :=
by rexact homotopy_group_isomorphism_of_pequiv _ (equiv_glue_neg X n)
2016-09-15 23:19:03 +00:00
definition πg_glue_homotopy_π_glue (X : spectrum) (n : ℤ ) : πg_glue X n ~ π_glue X n :=
2017-03-02 01:38:13 +00:00
by reflexivity
2016-09-09 20:45:44 +00:00
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ℤ ) :
2016-09-22 20:03:08 +00:00
π_glue Y n ∘* π→[2] (f (2 - succ n)) ~* π→[3] (f (2 - n)) ∘* π_glue X n :=
2016-09-15 20:24:01 +00:00
begin
2017-03-02 01:38:13 +00:00
change π→[2] (equiv_glue_neg Y n) ∘* π→[2] (f (2 - succ n)) ~*
π→[2] (Ω→ (f (2 - n))) ∘* π→[2] (equiv_glue_neg X n),
refine homotopy_group_functor_psquare 2 _,
refine !sglue_square ⬝v* ap1_psquare !pequiv_of_eq_commute
2016-09-15 20:24:01 +00:00
end
2016-09-09 20:45:44 +00:00
2017-07-05 19:40:15 +00:00
definition homotopy_group_spectrum_irrel_one {n m : ℤ } {k : ℕ } (E : spectrum) (p : n + 1 = m + k)
[Hk : is_succ k] : πg[k] (E n) ≃g π₁ (E m) :=
begin
induction Hk with k,
change π₁ (Ω[k] (E n)) ≃g π₁ (E m),
apply homotopy_group_isomorphism_of_pequiv 0,
symmetry,
have m + k = n, from (pred_succ (m + k))⁻¹ ⬝ ap pred (add.assoc m k 1 ⬝ p⁻¹) ⬝ pred_succ n,
induction (succ_str_add_eq_int_add m k ⬝ this),
exact equiv_gluen E m k
end
definition homotopy_group_spectrum_irrel {n m : ℤ } {l k : ℕ } (E : spectrum) (p : n + l = m + k)
[Hk : is_succ k] [Hl : is_succ l] : πg[k] (E n) ≃g πg[l] (E m) :=
have Πa b c : ℤ , a + (b + c) = c + (b + a), from λa b c,
!add.assoc⁻¹ ⬝ add.comm (a + b) c ⬝ ap (λx, c + x) (add.comm a b),
have n + 1 = m + 1 - l + k, from
ap succ (add_sub_cancel n l)⁻¹ ⬝ !add.assoc ⬝ ap (λx, x + (-l + 1)) p ⬝ !add.assoc ⬝
ap (λx, m + x) (this k (-l) 1) ⬝ !add.assoc⁻¹ ⬝ !add.assoc⁻¹,
homotopy_group_spectrum_irrel_one E this ⬝g
(homotopy_group_spectrum_irrel_one E (sub_add_cancel (m+1) l)⁻¹)⁻¹ᵍ
definition shomotopy_group_isomorphism_homotopy_group {n m : ℤ } {l : ℕ } (E : spectrum) (p : n + m = l)
[H : is_succ l] : πₛ[n] E ≃g πg[l] (E m) :=
have 2 - n + l = m + 2, from
ap (λx, 2 - n + x) p⁻¹ ⬝ !add.assoc⁻¹ ⬝ ap (λx, x + m) (sub_add_cancel 2 n) ⬝ add.comm 2 m,
homotopy_group_spectrum_irrel E this
definition shomotopy_group_pequiv_homotopy_group_ab {n m : ℤ } {l : ℕ } (E : spectrum) (p : n + m = l)
[H : is_at_least_two l] : πₛ[n] E ≃g πag[l] (E m) :=
begin
induction H with l,
exact shomotopy_group_isomorphism_homotopy_group E p
end
definition shomotopy_group_pequiv_homotopy_group {n m : ℤ } {l : ℕ } (E : spectrum) (p : n + m = l) :
πₛ[n] E ≃* π[l] (E m) :=
begin
cases l with l,
{ apply ptrunc_pequiv_ptrunc, symmetry,
change E m ≃* Ω (Ω (E (2 - n))),
refine !equiv_glue ⬝e* loop_pequiv_loop _,
refine !equiv_glue ⬝e* loop_pequiv_loop _,
apply pequiv_ap E,
have -n = m, from neg_eq_of_add_eq_zero p,
induction this,
rexact add.assoc (-n) 1 1 ⬝ add.comm (-n) 2 },
{ exact pequiv_of_isomorphism (shomotopy_group_isomorphism_homotopy_group E p) }
end
2016-09-09 20:45:44 +00:00
section
open chain_complex prod fin group
universe variable u
parameters {X Y : spectrum.{u}} (f : X →ₛ Y)
2016-09-14 22:46:53 +00:00
definition LES_of_shomotopy_groups : chain_complex +3ℤ :=
splice (λ(n : ℤ ), LES_of_homotopy_groups (f (2 - n))) (2, 0)
(π_glue Y) (π_glue X) (π_glue_square f)
-- This LES is definitionally what we want:
example (n : ℤ ) : LES_of_shomotopy_groups (n, 0) = πₛ[n] Y := idp
example (n : ℤ ) : LES_of_shomotopy_groups (n, 1) = πₛ[n] X := idp
example (n : ℤ ) : LES_of_shomotopy_groups (n, 2) = πₛ[n] (sfiber f) := idp
example (n : ℤ ) : cc_to_fn LES_of_shomotopy_groups (n, 0) = πₛ→[n] f := idp
example (n : ℤ ) : cc_to_fn LES_of_shomotopy_groups (n, 1) = πₛ→[n] (spoint f) := idp
-- the maps are ugly for (n, 2)
2016-11-24 04:54:57 +00:00
definition ab_group_LES_of_shomotopy_groups : Π(v : +3ℤ ), ab_group (LES_of_shomotopy_groups v)
| (n, fin.mk 0 H) := proof AbGroup.struct (πₛ[n] Y) qed
| (n, fin.mk 1 H) := proof AbGroup.struct (πₛ[n] X) qed
| (n, fin.mk 2 H) := proof AbGroup.struct (πₛ[n] (sfiber f)) qed
2016-09-14 22:46:53 +00:00
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
2016-11-24 04:54:57 +00:00
local attribute ab_group_LES_of_shomotopy_groups [instance]
2016-09-14 22:46:53 +00:00
2017-01-18 22:19:00 +00:00
definition is_mul_hom_LES_of_shomotopy_groups :
Π(v : +3ℤ ), is_mul_hom (cc_to_fn LES_of_shomotopy_groups v)
2016-09-14 22:46:53 +00:00
| (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed
2016-09-15 20:24:01 +00:00
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
2016-09-15 23:19:03 +00:00
| (n, fin.mk 2 H) := proof homomorphism.struct
2017-03-02 01:38:13 +00:00
(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n) qed
2016-09-14 22:46:53 +00:00
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
2016-09-09 20:45:44 +00:00
2017-05-11 21:17:50 +00:00
definition is_exact_LES_of_shomotopy_groups : is_exact LES_of_shomotopy_groups :=
begin
apply is_exact_splice, intro n, apply is_exact_LES_of_homotopy_groups,
end
2016-09-09 20:45:44 +00:00
-- In the comments below is a start on an explicit description of the LES for spectra
-- Maybe it's slightly nicer to work with than the above version
2017-05-11 21:17:50 +00:00
definition shomotopy_groups [reducible] : +3ℤ → AbGroup
| (n, fin.mk 0 H) := πₛ[n] Y
| (n, fin.mk 1 H) := πₛ[n] X
| (n, fin.mk k H) := πₛ[n] (sfiber f)
2016-09-09 20:45:44 +00:00
2017-05-11 21:17:50 +00:00
definition shomotopy_groups_fun : Π(v : +3ℤ ), shomotopy_groups (S v) →g shomotopy_groups v
| (n, fin.mk 0 H) := proof πₛ→[n] f qed
| (n, fin.mk 1 H) := proof πₛ→[n] (spoint f) qed
| (n, fin.mk 2 H) := proof homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (nat.succ nat.zero, 2) ∘g
πg_glue Y n ∘g (by reflexivity) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
--(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n)
2016-09-09 20:45:44 +00:00
end
2016-03-22 16:53:16 +00:00
structure sp_chain_complex (N : succ_str) : Type :=
(car : N → spectrum)
(fn : Π(n : N), car (S n) →ₛ car n)
(is_chain_complex : Πn, fn n ∘ₛ fn (S n) ~ₛ szero _ _)
section
variables {N : succ_str} (X : sp_chain_complex N) (n : N)
definition scc_to_car [unfold 2] [coercion] := @sp_chain_complex.car
definition scc_to_fn [unfold 2] : X (S n) →ₛ X n := sp_chain_complex.fn X n
definition scc_is_chain_complex [unfold 2] : scc_to_fn X n ∘ₛ scc_to_fn X (S n) ~ₛ szero _ _
:= sp_chain_complex.is_chain_complex X n
end
2016-03-23 18:30:39 +00:00
/- Mapping spectra -/
2017-05-24 12:25:58 +00:00
-- note: see also cotensor above
2016-03-21 22:53:25 +00:00
2017-06-28 14:49:46 +00:00
/- Prespectrification -/
2017-07-05 16:26:31 +00:00
definition is_sconnected {N : succ_str} {X Y : gen_prespectrum N} (h : X →ₛ Y) : Type :=
Π (E : gen_spectrum N), is_equiv (λ g : Y →ₛ E, g ∘ₛ h)
2017-06-28 14:49:46 +00:00
2017-07-07 19:11:55 +00:00
-- We introduce a prespectrification operation X ↦ prespectrification X, with the goal of implementing spectrification as the sequential colimit of iterated applications of the prespectrification operation.
2017-07-05 16:26:31 +00:00
definition prespectrification [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_prespectrum N :=
2017-06-28 14:49:46 +00:00
gen_prespectrum.mk (λ n, Ω (X (S n))) (λ n, Ω→ (glue X (S n)))
2017-07-07 19:11:55 +00:00
-- To define the unit η : X → prespectrification X, we need its underlying family of pointed maps
definition to_prespectrification_pfun {N : succ_str} (X : gen_prespectrum N) (n : N) : X n →* prespectrification X n :=
glue X n
-- And similarly we need the pointed homotopies witnessing that the squares commute
definition to_prespectrification_psq {N : succ_str} (X : gen_prespectrum N) (n : N) :
psquare (to_prespectrification_pfun X n) (Ω→ (to_prespectrification_pfun X (S n))) (glue X n)
(glue (prespectrification X) n) :=
psquare_of_phomotopy phomotopy.rfl
-- We bundle the previous two definitions into a morphism of prespectra
2017-07-05 16:26:31 +00:00
definition to_prespectrification {N : succ_str} (X : gen_prespectrum N) : X →ₛ prespectrification X :=
2017-06-28 14:49:46 +00:00
begin
fapply smap.mk,
2017-07-07 19:11:55 +00:00
exact to_prespectrification_pfun X,
exact to_prespectrification_psq X,
2017-06-28 14:49:46 +00:00
end
2017-07-07 19:11:55 +00:00
-- When E is a spectrum, then the map η : E → prespectrification E is an equivalence.
definition is_sequiv_smap_to_prespectrification_of_is_spectrum {N : succ_str} (E : gen_prespectrum N) (H : is_spectrum E) : is_sequiv_smap (to_prespectrification E) :=
2017-07-05 16:26:31 +00:00
begin
2017-07-07 19:11:55 +00:00
intro n, induction E, induction H, exact is_equiv_glue n,
2017-07-05 16:26:31 +00:00
end
2017-07-07 19:11:55 +00:00
-- If η : E → prespectrification E is an equivalence, then E is a spectrum.
definition is_spectrum_of_is_sequiv_smap_to_prespectrification {N : succ_str} (E : gen_prespectrum N) (H : is_sequiv_smap (to_prespectrification E)) : is_spectrum E :=
2017-07-05 16:26:31 +00:00
begin
2017-07-07 19:11:55 +00:00
fapply is_spectrum.mk,
exact H
2017-07-05 16:26:31 +00:00
end
2017-07-07 19:11:55 +00:00
-- Our next goal is to show that if X is a prespectrum and E is a spectrum, then maps X →ₛ E extend uniquely along η : X → prespectrification X.
-- In the following we define the underlying family of pointed maps of such an extension
definition is_sconnected_to_prespectrification_inv_pfun {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} : (X →ₛ E) → Π (n : N), prespectrification X n →* E n :=
λ (f : X →ₛ E) n, (equiv_glue E n)⁻¹ᵉ* ∘* Ω→ (f (S n))
-- In the following we define the commuting squares of the extension
definition is_sconnected_to_prespectrification_inv_psq {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (f : X →ₛ E) (n : N) :
psquare (is_sconnected_to_prespectrification_inv_pfun f n)
(Ω→ (is_sconnected_to_prespectrification_inv_pfun f (S n)))
(glue (prespectrification X) n)
(glue (gen_spectrum.to_prespectrum E) n)
:=
2017-06-28 14:49:46 +00:00
begin
2017-07-07 19:11:55 +00:00
fapply psquare_of_phomotopy,
2017-06-28 14:49:46 +00:00
refine (passoc (glue (gen_spectrum.to_prespectrum E) n) (pequiv.to_pmap
(equiv_glue (gen_spectrum.to_prespectrum E) n)⁻¹ᵉ*) (Ω→ (to_fun f (S n))))⁻¹* ⬝* _,
refine pwhisker_right (Ω→ (to_fun f (S n))) (pright_inv (equiv_glue E n)) ⬝* _,
2017-07-05 16:26:31 +00:00
refine _ ⬝* pwhisker_right (glue (prespectrification X) n) ((ap1_pcompose (pequiv.to_pmap (equiv_glue (gen_spectrum.to_prespectrum E) (S n))⁻¹ᵉ*) (Ω→ (to_fun f (S (S n)))))⁻¹*),
refine pid_pcompose (Ω→ (f (S n))) ⬝* _,
2017-06-28 14:49:46 +00:00
repeat exact sorry
end
2017-07-07 19:11:55 +00:00
-- Now we bundle the definition into a map (X →ₛ E) → (prespectrification X →ₛ E)
definition is_sconnected_to_prespectrification_inv {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N)
: (X →ₛ E) → (prespectrification X →ₛ E) :=
begin
intro f,
fapply smap.mk,
exact is_sconnected_to_prespectrification_inv_pfun f,
exact is_sconnected_to_prespectrification_inv_psq f
end
definition is_sconnected_to_prespectrification_isretr_pfun {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (f : prespectrification X →ₛ E) (n : N) : to_fun (is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X)) n ~* to_fun f n := begin exact sorry end
definition is_sconnected_to_prespectrification_isretr_psq {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (f : prespectrification X →ₛ E) (n : N) :
ptube_v (is_sconnected_to_prespectrification_isretr_pfun f n)
(Ω⇒ (is_sconnected_to_prespectrification_isretr_pfun f (S n)))
(glue_square (is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X)) n)
(glue_square f n)
:=
begin
repeat exact sorry
end
2017-07-05 16:26:31 +00:00
definition is_sconnected_to_prespectrification_isretr {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) (f : prespectrification X →ₛ E) : is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X) = f :=
2017-07-07 19:11:55 +00:00
begin
fapply eq_of_shomotopy,
fapply shomotopy.mk,
exact is_sconnected_to_prespectrification_isretr_pfun f,
exact is_sconnected_to_prespectrification_isretr_psq f,
end
definition is_sconnected_to_prespectrification_issec_pfun {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (g : X →ₛ E) (n : N) :
to_fun (is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X) n ~* to_fun g n
:=
begin
repeat exact sorry
end
definition is_sconnected_to_prespectrification_issec_psq {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (g : X →ₛ E) (n : N) :
ptube_v (is_sconnected_to_prespectrification_issec_pfun g n)
(Ω⇒ (is_sconnected_to_prespectrification_issec_pfun g (S n)))
(glue_square (is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X) n)
(glue_square g n)
:=
2017-07-05 16:26:31 +00:00
begin
repeat exact sorry
end
definition is_sconnected_to_prespectrification_issec {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) (g : X →ₛ E) :
is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X = g :=
2017-06-28 14:49:46 +00:00
begin
2017-07-07 19:11:55 +00:00
fapply eq_of_shomotopy,
fapply shomotopy.mk,
exact is_sconnected_to_prespectrification_issec_pfun g,
exact is_sconnected_to_prespectrification_issec_psq g,
2017-06-28 14:49:46 +00:00
end
2017-07-05 16:26:31 +00:00
definition is_sconnected_to_prespectrify {N : succ_str} (X : gen_prespectrum N) :
is_sconnected (to_prespectrification X) :=
begin
intro E,
fapply adjointify,
exact is_sconnected_to_prespectrification_inv X E,
exact is_sconnected_to_prespectrification_issec X E,
exact is_sconnected_to_prespectrification_isretr X E
end
2017-06-28 14:49:46 +00:00
-- Conjecture
2017-07-05 16:26:31 +00:00
definition is_spectrum_of_local (X : gen_prespectrum +ℕ ) (Hyp : is_equiv (λ (f : prespectrification (psp_sphere) →ₛ X), f ∘ₛ to_prespectrification (psp_sphere))) : is_spectrum X :=
2017-06-28 14:49:46 +00:00
begin
2017-07-05 16:26:31 +00:00
fapply is_spectrum.mk,
2017-06-28 14:49:46 +00:00
exact sorry
end
2016-09-16 01:20:16 +00:00
2016-03-21 22:53:25 +00:00
/- Spectrification -/
2016-10-06 23:53:44 +00:00
open chain_complex
definition spectrify_type_term {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ ) : Type* :=
Ω[k] (X (n +' k))
2017-06-08 20:04:58 +00:00
definition spectrify_type_fun' {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ ) :
2016-10-06 23:53:44 +00:00
Ω[k] (X n) →* Ω[k+1] (X (S n)) :=
!loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X n)
definition spectrify_type_fun {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ ) :
spectrify_type_term X n k →* spectrify_type_term X n (k+1) :=
2017-06-08 20:04:58 +00:00
spectrify_type_fun' X (n +' k) k
definition spectrify_type_fun_zero {N : succ_str} (X : gen_prespectrum N) (n : N) :
spectrify_type_fun X n 0 ~* glue X n :=
!pid_pcompose
2016-10-06 23:53:44 +00:00
definition spectrify_type {N : succ_str} (X : gen_prespectrum N) (n : N) : Type* :=
pseq_colim (spectrify_type_fun X n)
2016-10-13 00:07:18 +00:00
/-
2017-06-06 17:26:18 +00:00
Let Y = spectify X ≡ colim_k Ω^k X (n + k). Then
2016-10-13 00:07:18 +00:00
Ω Y (n+1) ≡ Ω colim_k Ω^k X ((n + 1) + k)
... = colim_k Ω^{k+1} X ((n + 1) + k)
... = colim_k Ω^{k+1} X (n + (k + 1))
... = colim_k Ω^k X(n + k)
... ≡ Y n
-/
2017-06-08 20:04:58 +00:00
definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ ) :
spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) :=
begin
2017-06-15 02:55:10 +00:00
refine !ap1_pcompose⁻¹*
2017-06-08 20:04:58 +00:00
end
2016-10-06 23:53:44 +00:00
definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) :
spectrify_type X n ≃* Ω (spectrify_type X (S n)) :=
begin
refine !pshift_equiv ⬝e* _,
2017-06-08 20:04:58 +00:00
transitivity pseq_colim (λk, spectrify_type_fun' X (S n +' k) (succ k)),
2016-10-06 23:53:44 +00:00
fapply pseq_colim_pequiv,
{ intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ },
2017-06-08 20:04:58 +00:00
{ exact abstract begin intro k,
2016-10-13 00:07:18 +00:00
refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (loopn_succ_in_inv_natural (succ k) _) ⬝* _,
2016-10-10 15:10:24 +00:00
refine !passoc ⬝* _ ⬝* !passoc⁻¹*, apply pwhisker_left,
refine !apn_pcompose⁻¹* ⬝* _ ⬝* !apn_pcompose, apply apn_phomotopy,
2017-06-08 20:04:58 +00:00
exact !glue_ptransport⁻¹* end end },
2017-06-07 04:54:52 +00:00
refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*,
2017-06-08 20:04:58 +00:00
exact pseq_colim_equiv_constant (λn, !spectrify_type_fun'_succ),
2016-10-06 23:53:44 +00:00
end
definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N :=
spectrum.MK (spectrify_type X) (spectrify_pequiv X)
2017-06-06 18:08:37 +00:00
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
2016-10-10 15:10:24 +00:00
begin
fapply smap.mk,
2017-03-02 01:38:13 +00:00
{ intro n, exact pinclusion _ 0 },
2017-06-08 20:04:58 +00:00
{ intro n, apply phomotopy_of_psquare,
2017-06-06 21:07:07 +00:00
refine !pid_pcompose⁻¹* ⬝ph* _,
2017-06-08 20:04:58 +00:00
refine !passoc ⬝* pwhisker_left _ (pshift_equiv_pinclusion (spectrify_type_fun X n) 0) ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine _ ◾* (spectrify_type_fun_zero X n ⬝* !pid_pcompose⁻¹*),
refine !passoc ⬝* pwhisker_left _ !pseq_colim_pequiv_pinclusion ⬝* _,
refine pwhisker_left _ (pwhisker_left _ (ap1_pid) ⬝* !pcompose_pid) ⬝* _,
2017-06-09 00:09:48 +00:00
refine !passoc ⬝* pwhisker_left _ !seq_colim_equiv_constant_pinclusion ⬝* _,
2017-06-08 20:04:58 +00:00
apply pinv_left_phomotopy_of_phomotopy,
exact !pseq_colim_loop_pinclusion⁻¹*
}
2016-10-10 15:10:24 +00:00
end
2017-06-09 00:28:15 +00:00
definition spectrify.elim_n {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
(f : X →ₛ Y) (n : N) : (spectrify X) n →* Y n :=
begin
fapply pseq_colim.elim,
{ intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) },
{ intro k, refine !passoc ⬝* pwhisker_right _ !equiv_gluen_inv_succ ⬝* _,
refine !passoc ⬝* _, apply pwhisker_left,
refine !passoc ⬝* _,
refine pwhisker_left _ ((passoc _ _ (_ ∘* _))⁻¹*) ⬝* _,
refine pwhisker_left _ !passoc⁻¹* ⬝* _,
refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _,
refine pwhisker_right _ !apn_pinv ⬝* _,
refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*,
refine apn_psquare k _,
2017-06-15 02:55:10 +00:00
refine psquare_of_phomotopy !smap.glue_square }
2017-06-09 00:28:15 +00:00
end
2016-10-10 15:10:24 +00:00
definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
2016-10-06 23:53:44 +00:00
(f : X →ₛ Y) : spectrify X →ₛ Y :=
begin
fapply smap.mk,
2017-06-09 00:28:15 +00:00
{ intro n, exact spectrify.elim_n f n },
2016-10-06 23:53:44 +00:00
{ intro n, exact sorry }
end
2017-06-09 00:28:15 +00:00
definition phomotopy_spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
(f : X →ₛ Y) (n : N) : spectrify.elim_n f n ∘* spectrify_map n ~* f n :=
begin
refine pseq_colim.elim_pinclusion _ _ 0 ⬝* _,
exact !pid_pcompose
end
2017-06-08 20:03:10 +00:00
definition spectrify_fun {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : spectrify X →ₛ spectrify Y :=
spectrify.elim ((@spectrify_map _ Y) ∘ₛ f)
2017-07-07 21:32:57 +00:00
/-
suspension of a spectrum
this is just a shift. A shift in the other direction is loopn,
but we might not want to define that yet.
-/
definition ssusp [constructor] {N : succ_str} (X : gen_spectrum N) : gen_spectrum N :=
spectrum.MK (λn, X (S n)) (λn, equiv_glue X (S n))
definition ssuspn [constructor] (k : ℤ ) (X : spectrum) : spectrum :=
spectrum.MK (λn, X (n + k))
(λn, equiv_glue X (n + k) ⬝e* loop_pequiv_loop (pequiv_ap X !add.right_comm))
definition shomotopy_group_ssuspn (k : ℤ ) (X : spectrum) (n : ℤ ) :
πₛ[k] (ssuspn n X) ≃g πₛ[k - n] X :=
have k - n + (2 - k + n) = 2, from
!add.comm ⬝
ap (λx, x + (k - n)) (!add.assoc ⬝ ap (λx, 2 + x) (ap (λx, -k + x) !neg_neg⁻¹ ⬝ !neg_add⁻¹)) ⬝
sub_add_cancel 2 (k - n),
(shomotopy_group_isomorphism_homotopy_group X this)⁻¹ᵍ
2016-03-21 22:53:25 +00:00
/- Tensor by spaces -/
/- Smash product of spectra -/
2017-06-06 15:38:08 +00:00
open smash
definition smash_prespectrum (X : Type*) (Y : prespectrum) : prespectrum :=
prespectrum.mk (λ z, X ∧ Y z) begin
intro n, refine loop_psusp_pintro (X ∧ Y n) (X ∧ Y (n + 1)) _,
refine _ ∘* (smash_psusp X (Y n))⁻¹ᵉ*,
refine smash_functor !pid _,
refine psusp_pelim (Y n) (Y (n + 1)) _,
exact !glue
end
2017-06-07 15:39:26 +00:00
definition smash_prespectrum_fun {X X' : Type*} {Y Y' : prespectrum} (f : X →* X') (g : Y →ₛ Y') : smash_prespectrum X Y →ₛ smash_prespectrum X' Y' :=
2017-06-08 20:03:10 +00:00
smap.mk (λn, smash_functor f (g n)) begin
2017-06-07 15:39:26 +00:00
intro n,
refine susp_to_loop_psquare _ _ _ _ _,
refine pvconcat (psquare_transpose (phinverse (smash_psusp_natural f (g n)))) _,
refine vconcat_phomotopy _ (smash_functor_split f (g (S n))),
refine phomotopy_vconcat (smash_functor_split f (psusp_functor (g n))) _,
refine phconcat _ _,
let glue_adjoint := psusp_pelim (Y n) (Y (S n)) (glue Y n),
exact pid X' ∧→ glue_adjoint,
exact smash_functor_psquare (pvrefl f) (phrefl glue_adjoint),
refine smash_functor_psquare (phrefl (pid X')) _,
refine loop_to_susp_square _ _ _ _ _,
exact smap.glue_square g n
end
2017-06-08 20:03:10 +00:00
definition smash_spectrum (X : Type*) (Y : spectrum) : spectrum :=
spectrify (smash_prespectrum X Y)
definition smash_spectrum_fun {X X' : Type*} {Y Y' : spectrum} (f : X →* X') (g : Y →ₛ Y') : smash_spectrum X Y →ₛ smash_spectrum X' Y' :=
spectrify_fun (smash_prespectrum_fun f g)
2016-03-21 22:53:25 +00:00
/- Cofibers and stability -/
2017-07-04 11:57:46 +00:00
------------------------------
-- Contractible spectrum
------------------------------
definition sunit.{u} [constructor] : spectrum.{u} :=
spectrum.MK (λn, plift punit) (λn, pequiv_of_is_contr _ _ _ _)
definition shomotopy_group_sunit.{u} (n : ℤ ) : πₛ[n] sunit.{u} ≃g trivial_ab_group_lift.{u} :=
have H : 0 <[ℕ ] 2, from !zero_lt_succ,
isomorphism_of_is_contr (@trivial_homotopy_group_of_is_trunc _ _ _ !is_trunc_lift H)
!is_trunc_lift
open option
definition add_point_spectrum [unfold 3] {X : Type} (Y : X → spectrum) : X₊ → spectrum
| (some x) := Y x
| none := sunit
definition shomotopy_group_add_point_spectrum {X : Type} (Y : X → spectrum) (n : ℤ ) :
Π(x : X₊), πₛ[n] (add_point_spectrum Y x) ≃g add_point_AbGroup (λ (x : X), πₛ[n] (Y x)) x
| (some x) := by reflexivity
| none := shomotopy_group_sunit n
2017-05-24 12:25:58 +00:00
/- The Eilenberg-MacLane spectrum -/
definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum :=
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
2017-07-02 00:14:18 +00:00
definition EM_spectrum_pequiv {G H : AbGroup} (e : G ≃g H) (n : ℤ ) :
EM_spectrum G n ≃* EM_spectrum H n :=
spectrum_pequiv_of_nat (λk, EM_pequiv_EM k e) n
2017-07-04 11:57:46 +00:00
definition EM_spectrum_trivial.{u} (n : ℤ ) :
EM_spectrum trivial_ab_group_lift.{u} n ≃* trivial_ab_group_lift.{u} :=
pequiv_of_is_contr _ _
(is_contr_spectrum_of_nat (λk, is_contr_EM k !is_trunc_lift) n)
!is_trunc_lift
2017-07-05 19:40:15 +00:00
definition is_contr_EM_spectrum_neg (G : AbGroup) (n : ℕ ) : is_contr (EM_spectrum G (-[1+n])) :=
begin
induction n with n IH,
{ apply is_contr_loop, exact is_trunc_EM G 0 },
{ apply is_contr_loop_of_is_contr, exact IH }
end
2017-06-09 17:51:04 +00:00
/- Wedge of prespectra -/
open fwedge
definition fwedge_prespectrum.{u v} {I : Type.{v}} (X : I -> prespectrum.{u}) : prespectrum.{max u v} :=
begin
fconstructor,
{ intro n, exact fwedge (λ i, X i n) },
{ intro n, fapply fwedge_pmap,
2017-06-09 21:42:05 +00:00
intro i, exact Ω→ !pinl ∘* !glue
2017-06-09 17:51:04 +00:00
}
end
2017-05-24 12:25:58 +00:00
2016-03-21 22:53:25 +00:00
end spectrum